Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 3cosx + sinx - 2
![]()
![]()
![]()
![]()
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)
\(ĐK:sinx-cosx\ne-2\)
\(< =>2y-1=sinx\left(1-y\right)+cosx\left(y+3\right)\)
Theo Bunhiacopxki:
\(\left[sinx\left(1-y\right)+cosx\left(y+3\right)\right]^2\)\(\le\left(sin^2x+cos^2x\right)\left[\left(1-y\right)^2+\left(y+3\right)^2\right]\)
\(< =>\left(2y-1\right)^2\le2y^2+4y+10\)
\(< =>2y^2-8y-9\le0\)
=> Bấm máy tìm Max, Min của y
(Sry máy tính của t bị ngáo không bấm ra)
\(\Rightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)
\(\Rightarrow\left(y-1\right)sinx-\left(y+3\right)cosx=1-2y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất
\(\Rightarrow\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow2y^2-8y-9\le0\)
\(\Rightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)
\(y_{max}=\dfrac{4+\sqrt{34}}{2}\) ; \(y_{min}=\dfrac{4-\sqrt{34}}{2}\)
\(y=\dfrac{sinx+3cosx+1}{sinx-cosx+2}\)
\(\Leftrightarrow y.sinx-y.cosx+2y=sinx+3cosx+1\)
\(\Leftrightarrow\left(y-1\right)sinx-\left(y+3\right).cosx=1-2y\)
Phương trình có nghiệm khi \(\left(y-1\right)^2+\left(y+3\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow y^2-2y+1+y^2+6y+9\ge4y^2-4y+1\)
\(\Leftrightarrow2y^2-8y-9\le0\)
\(\Leftrightarrow\dfrac{4-\sqrt{34}}{2}\le y\le\dfrac{4+\sqrt{34}}{2}\)
Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau: y = 2 . sin x + 3
A . m a x y = 5 , m i n y = 2
B . m a x y = 5 , m i n y = 3
C . m a x y = 5 , m i n y = 1
D . m a x y = 5 , m i n y = 2 5
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tìm tập giá tị lớn nhất, giá trị nhỏ nhất của hàm số sau y = sinx + 2 - sin 2 x
A. min y=0; max y=3.
B. min y=0; max y=4.
C. min y=0; max y=6
D. min y=0; max y=2.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = sin x + 2 - sin 2 x
A. m i n y = - 2 , m a x y = 4
B. m i n y = 0 , m a x y = 4
C. m i n y = - 2 , m a x y = 0
D. m i n y = 0 , m a x y = 2
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=sinx+ 2 - sin 2 x
A.![]()
B. ![]()
C. ![]()
D. ![]()
Đáp án D
Do
nên
suy ra ![]()
dấu bằng xảy ra khi và chỉ khi
Mặt khác
nên
Dấu bằng xảy ra khi
![]()
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số
y= 3cosx +1
ta có -1\(\le cosx\le1\)
=> GTLN A=3.1+1=4
=> GTNN: A= -1.3+1=-2
Ta có: \(-1\le\cos x\le1\)
\(\Rightarrow y_{max}=3.1+1=4(cm) \) khi \(\cos(x)=1\leftrightarrow x=k2\pi\)
\(y_{mim}=3.(-1)+1=-2(cm) \) khi \(\cos(x)=-1\leftrightarrow x=\pi +k2\pi\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y = sin x + 2 - sin 2 x
A. miny=0; max y= 3
B. min y= 0; max y= 4
C.min y= 0; max y= 6
D. min y= 0; max y = 2
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)