tìm số dư phép chia
x99+x55+x11+x+7 cho x2+1
tìm dư của phép chia
f(x)= x100 + x99+ x98 + x97 + ........ x + 1 chia cho (x-1)
Thực hiện phép chia \(f(x)\) cho \(x-1\), ta được:
\(f(x)=(x-1)\cdot Q(x)+r\\\Rightarrow f(1)=(1-1)\cdot Q(1)+r\\\Rightarrow f(1)=r\\\Rightarrow 1^{100}+1^{99}+1^{98}+1^{97}+...+1+1=r\\\Rightarrow r=101(101.chữ.số.1)\)
Vậy số dư của phép chia $f(x)$ cho $(x-1)$ là 101.
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Tìm số dư trong phép chia của biểu thức:
( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 2004 cho x2 + 8x + 1.
Cho hàm số
f x = x 9 9 - x 8 8 + x 6 6 - x 5 5 + x 4 4 - x 2 2 + x + 2017
Mệnh đề nào sau đây đúng?
A. Hàm số f(x) chỉ có cực đại;
B. Hàm số f(x) chỉ có cực tiểu;
C. Hàm số f(x) chỉ có cực đại và cực tiểu;
D. Hàm số f(x) không có cực trị
· Tập xác định: D = R
f ' x = x 8 - x 7 + x 5 - x 4 + x 3 - x + 1 = 1 + x - 1 x 7 + x 4 + x 2 + x = 1 + x 3 - 1 x 2 + x + 1 x 7 + x 4 + x 2 + x 1 = x 10 + x 5 + 1 x 2 + x + 1 + 1 = x 5 + 1 2 2 + 3 4 x + 1 2 2 + 3 4 > 0
Vậy hàm số f(x) không có cực trị.
Đáp án D
Tìm x để phép chia ( 5 x 3 - 3 x 2 + 7 ) : ( x 2 + 1 ) có dư bằng 5
Cho đa thức Q=(x+3)(x+5)(x+7)(x+9)+2014. Tìm số dư trong phép chia đa thức Q cho đa thức x2+12x+32.
Tìm x để phép chia (5x3 – 3x2 + 7) : ( x2 + 1) có dư bằng 5.
Ta có: \(\left(15x-6x+7\right):\left(2x+1\right)=5\)
Áp dụng định lý Bozout, ta có:
\(f\left(\frac{-1}{2}\right)=15\cdot\frac{-1}{2}-6\cdot\frac{-1}{2}+7=\frac{5}{2}\)
Vậy số dư là 2,5
Không làm phép chia, hãy tìm dư trong phép chia đa thức: x9+x6+x3+1 cho da thuc x2+x+1
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
Tìm x để phép chia sau có số dư bằng 0
( 2x4 - 3x3 + 4x2 +1) : x2 - 1
\(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}\)
\(=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để đây là phép chia hết thì -3x+7=0
hay \(x=\dfrac{7}{3}\)
1, 2x +5 chia hết cho x+1 . tìm x
2, một phép chia có sbc là 77, số dư là 7. tìm sc và t của phép chia.
1)2x+5 chia hết cho x+1
2x+2+3 chia hết cho x+1
2(x+1)+3 chia hết cho x+1
=>3 chia hết cho x+1 hay x+1EƯ(3)={1;3}
=>xE{0;2}
2)Gọi số chia là a, thương là b
Ta có: 77=a*b+7(a>7)
a*b=77-7=70
*)nếu a=8 thì b thập phân(loại)
*)nếu a=9 thì b thập phân nốt(loại)
*)Nếu a=10 thì b=7(chọn)
Vậy số chia là 10 và thương là 7