Tìm giá trị nhỏ nhất của: A = là:
A.
2 tại x = 2021
B.
-1 tại x = 2020
C.
2020 tại x = 2021
D.
1 tại x = 2022
Tính giá trị của biểu thức: A(x)=x+x^2+x^3+...+x^2020+x^2021 tại x=1/2^2022
A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)
=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)
=>A*(2^2022-1)=1-1/2^(2022^2021)
=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)
Tính giá trị biểu thức \(A\left(x\right)=x+x^2+x^3+...+x^{2020}+x^{2021}\) tại \(x=\dfrac{1}{2^{2022}}\)
Tìm giá trị nhỏ nhất của các biểu thức sau :
a) A=x^2 + 2.y^2 +3.
b)B= /x-2022/+/x-2021/+/x-2020/
Tìm số tự nhiên x lớn nhất để biểu thức:
A=(x-2022).(x-2021).(x-2020)......(x-2).(x-1) giá trị lớn nhất và giá trị nhỏ nhất đó bằng bao nhiêu?
Các bạn giúp tớ nha!
Tìm giá trị nhỏ nhất của P=\(\left(x-1\right)^{2020}\)+\(\left(y-1\right)^{2021}\)+\(\left(z-1\right)^{2022}\)
Câu 30: Tìm số nguyên x sao cho x + 2021 là số nguyên âm lớn nhất, x bằng:
A.-1 B.-2020 C.-2021 D.-2022
Câu 30: Tìm số nguyên x sao cho x + 2021 là số nguyên âm lớn nhất, x bằng:
A.-1 B.-2020 C.-2021 D.-2022
Giá trị nhỏ nhất của A = -40
x = 2035
Giá trị nhỏ nhất của B = -207
x = 1
Giá trị nhỏ nhất của C = 4
x = -1
Giá trị nhỏ nhất của D = -2
x ∈ {-2;-1}
Giá trị nhỏ nhất của E = -2021
x = 2019
y = -2020
Giá trị của biểu thức Q - x^2 - y^2 với x= 1012 và y= 1011
A. 2022 B.2020 C.2023 D.2021
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
A=(\(x\)-4)\(^2\)+1 B=\(\left|3x-2\right|\)-5 C=5-(2\(x\)-1)\(^4\)
D=-3(\(x\)-3)\(^2\)-(y-1)\(^2\)-2021 E=-\(\left|x^2-1\right|\)-(\(x\)-1)\(^2\)-y\(^2\)-2020
giúp mình với bài * khó quá
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
$E=-|x^2-1|-(x-1)^2-y^2-2020$
Ta thấy:
$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$
Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$
$\Leftrightarrow x=1; y=0$