Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MINH LÊ ĐÌNH
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2023 lúc 0:48

A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)

=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)

=>A*(2^2022-1)=1-1/2^(2022^2021)

=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)

1234567890
Xem chi tiết
Học24
Xem chi tiết
Trên con đường thành côn...
8 tháng 8 2021 lúc 11:10

undefined

Phan Nguyên Anh
Xem chi tiết
tnt
Xem chi tiết
Nho Lê
Xem chi tiết
hoàng thị thanh hoa
15 tháng 1 2022 lúc 18:34

A

Đặng Phương Linh
15 tháng 1 2022 lúc 18:37

a

Câu 30: Tìm số nguyên x sao cho x + 2021 là số nguyên âm lớn nhất, x bằng:

A.-1                                      B.-2020                 C.-2021                 D.-2022

❖︵crυѕн⁀ᶦᵈᵒᶫ
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
12 tháng 1 2021 lúc 22:16

Giá trị nhỏ nhất của A = -40

x = 2035

Giá trị nhỏ nhất của B = -207

x = 1

Giá trị nhỏ nhất của C = 4

x = -1

Giá trị nhỏ nhất của D = -2

x ∈ {-2;-1}

Giá trị nhỏ nhất của E = -2021

x = 2019

y = -2020

Phạm Thị Diễm My
Xem chi tiết
ILoveMath
14 tháng 1 2022 lúc 16:38

C

Trần Đình Hoàng Quân
Xem chi tiết
Akai Haruma
20 tháng 6 2023 lúc 11:40

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

Akai Haruma
20 tháng 6 2023 lúc 11:45

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

Akai Haruma
20 tháng 6 2023 lúc 11:47

$E=-|x^2-1|-(x-1)^2-y^2-2020$

Ta thấy:

$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$

Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$

$\Leftrightarrow x=1; y=0$