9x^2 + 29x + 30xy - 6x + 30y - 24 = 0
phân tích thành nhân tử
9x^2 - 6x + 1
x^3 + 4x^2 - 29x + 24
27x^3 - 1/27
\(\text{a) }9x^2-6x+1\\ =\left(3x\right)^2-2\cdot3x\cdot1+1^2\\ =\left(3x-1\right)^2\\ \\ \)
\(\text{b) }x^3+4x^2-29x+24\\ =x^3+5x^2-x^2-24x-5x+24\\ =\left(x^3+5x^2-24x\right)-\left(x^2+5x-24\right)\\ =x\left(x^2+5x-24\right)-\left(x^2+5x-24\right)\\ =\left(x-1\right)\left(x^2+5x-24\right)\\ \\ \)
\(\text{c) }27x^3-\dfrac{1}{27}\\ =\left(3x\right)^3-\left(\dfrac{1}{3}\right)^3\\ =\left(3x-\dfrac{1}{3}\right)\left(9x^2+x+\dfrac{1}{9}\right)\)
câu đầu tách hạng tử
câu 2 dùng máy tính đoán nghiệm
câu 3 tạo HĐT
c ) \(27x^3-\dfrac{1}{27}=\left(3x-\dfrac{1}{3}\right)\left(9x^2+x+\dfrac{1}{9}\right)\)
giúp mik kiểm tra 2 câu này vs
a) (x+1)(x+9)=(x+3)(x+5)
<=>x^2+10x+9=x^2+8x+15
<=>x^2+10x+9-x^2-8x-15=0
<=>9x-6=0
<=>9x=6
<=>x=6/9=2/3 => S= 2/3
d) (3x+5)(2x+1)=(6x-2)(x-3)
<=>6x^2+13x+5=6x^2-16x+6
<=>6x^2+13x+5-6x^2+16x-6=0
<=>29x-1=0
<=>29x=1
<=>x=1/29
a,
đoạn 9x-6-> 2x-6=0
=> x=3
b,6x^2+13x+5=6x^2-20x+6
33x=1
=>x=1/33
a) (x+1)(x+9)=(x+3)(x+5)
<=>x^2+10x+9=x^2+8x+15
<=>x^2+10x+9-x^2-8x-15=0
<=>9x-6=0 phải là 2x - 6
<=>9x=6
<=>x=6/9=2/3 => S= 2/3
d) (3x+5)(2x+1)=(6x-2)(x-3)
<=>6x^2+13x+5=6x^2-16x+6 phải là 6x^2 - 20x + 6
<=>6x^2+13x+5-6x^2+16x-6=0
<=>29x-1=0
<=>29x=1
<=>x=1/29
a) \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+10x+9=x^2+8x+15\)
\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
Vây tập nghiệm của phương trình là \(S=\left\{3\right\}\)
d) \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow x=\frac{1}{33}\)
Vây tập nghiệm của phương trình là \(S=\left\{\frac{1}{33}\right\}\)
Giải các phương trình sau
a) 6x4 + 5x3 - 38x2 + 5x + 6 b) 6x5 - 29x4 + 27x3 - 29x + 6 = 0
c) 2x8 - 9x7 + 20x6 + - 33x5 + 46x4 - 66x3 + 80x2 - 72x + 32 = 0
tìm x biết 6x^5-29x^4+27x^3+27x^2-29x+6=0
tìm x biết 6x^5-29x^4+27x^3+27x^2-29x+6=0
tìm x biết \(6x^5-29x^4+27x^3+27x^2-29x+6=0...\)
\(\Leftrightarrow\) \(6x^5-12x^4-17x^4+34x^3-7x^3+14x^2+13x^2-26x-3x+\)6 =0
\(6x^5-29x^4+27x^3+27x^2-29x+6=0\)
\(\Leftrightarrow\left(6x^5-18x^4\right)+\left(-11x^4+33x^3\right)+\left(-6x^3+18x^2\right)+\left(9x^2-27x\right)+\left(-2x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^4-11x^3-6x^2+9x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\left(6x^4-12x^3\right)+\left(x^3-2x^2\right)+\left(-4x^2+8x\right)+\left(x-2\right)\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(6x^3+x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(\left(6x^3+6x^2\right)+\left(-5x^2-5x\right)+\left(x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(\left(6x^2-3x\right)+\left(-2x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow x=\left(3;2;-1;\frac{1}{2};\frac{1}{3}\right)\)
9x^2+25y^2+30xy
\(9x^2+25y^2+30xy\)
\(=\)\(9x^2+30xy+25y^2\) ( sắp lại cho đẹp đội hình thui :)
\(=\)\(\left(3x\right)^2+2.3x.5y+\left(5y\right)^2\)
\(=\)\(\left(3x+5y\right)^2\)
( phần này trở đi ko ghi vô nhé )
Cứ áp dụng \(a^2+2ab+b^2=\left(a+b\right)^2\)
Trong đó \(a=3x\)\(;\)\(b=5y\)
Thay vào ta được \(\left(3x\right)^2+2.3x.5y+\left(5y\right)^2=\left(3x+5y\right)^2\)
Chúc bạn học tốt ~
Viết theo mẫu : A^2+2ab +B=(A+B)^2
a) x^2 + 2x +1
b)x^2 + 8x+16
c) x^2 +6x +9
d)4x^2+4x+1
e) 36+ x^2 - 12x
f) 4x^2 + 12x +9
g) x^4 +81 +18x^2
h) 9x^2 + 30xy + 25y^2
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
Bài 1: Tìm các số x,y thỏa mãn đăng thức:
a) 4x^2 + 3y^2 - 4x + 30y + 76 = 0
b) 3x^2 + y^2 - 12x - 20y + 112 = 0
Bài 2:
a) Tìm GTNN của biểu thức: A=16x^2 - 8x + 3
b) Tìm GTLN của biểu thức: B=19 - 6x - 9x^2
bài 2:
a)\(A=16x^2-8x+3\)
\(=\left[\left(4x\right)^2-2.4x.1+1^2\right]-1+3\)
\(=\left(4x-1\right)^2+2\)
ta thấy: \(\left(4x-1\right)^2\ge0\)
\(\left(4x-1\right)^2+2\ge2\)
vậy GTNN của A là 2 khi \(x=\dfrac{1}{4}\)
b) \(B=19-6x-9x^2\)
\(=-\left[\left(3x\right)^2+2.3x.1+1^2\right]+19\)
\(=-\left(3x-1\right)^2+19\)
ta thấy: \(-\left(3x-1\right)^2\le0\)
\(-\left(3x-1\right)^2+19\le19\)
vậy GTLN của B là 19 khi \(x=\dfrac{1}{3}\)