Cho x 2 = y 3 = z 5 v à x + y + z = - 90 . Số lớn nhất trong ba số x; y; z là?
A. 27
B. -27
C. -18
D. -45
1, x/5= y/3 và x -y = 20
2, x/-2 = y/5 và x+12
3,x/5 = y/6 = z/7 và x+ y=z=10
4,x/2=y/3=z/-4 và x-y-z=27
5,x/3=z/4 ;y/2=z/2 và x-y-z=33
6, x/3=y/4 và x.y=12
các b giúp mình làm dạng toán này với ạ
làm xong rồi nhấn gửi bỗng dưng lỗi mất hết luôn TTT^^^^^^TTTTT
1,
Ta có: \(\frac{x}{5}=\frac{y}{3}\)
=> \(\frac{x}{5}=\frac{y}{3}\) và \(x-y=20\).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10.\)
\(\left\{{}\begin{matrix}\frac{x}{5}=10=>x=10.5=50\\\frac{y}{3}=10=>y=10.3=30\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(50;30\right)\).
4,
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\) và \(x-y-z=27.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3-\left(4\right)}=\frac{27}{3}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{-4}=9=>z=9.\left(-4\right)=-36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;-36\right)\).
Dài quá mình chỉ làm 2 câu thôi nhé.
Chúc bạn học tốt!
Tìm x,y,z biết
1) x/6=y/3=2/3 và 2x-3y+3z=21
2)x/2=y/-3=z/-4 và 4x-3y-2z=1
3) x+1/3=y+2/4=z-3/5 và x+y+z=18
4) x-1/3=y-2/4=z-3/5 và x+y+z=30
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{3}=\dfrac{2x-3y+3z}{2\cdot6-3\cdot3+3\cdot3}=\dfrac{21}{12}=\dfrac{7}{4}\)
Do đó: x=21/2; y=21/4; z=21/4
2: ÁP dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{-4}=\dfrac{4x-3y-2z}{4\cdot2-3\cdot\left(-3\right)-2\cdot\left(-4\right)}=\dfrac{1}{25}\)
Do đó: x=2/25; y=-3/25; z=-4/25
3: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z-3}{5}=\dfrac{x+y+z+1+2-3}{3+4+5}=\dfrac{18}{12}=\dfrac{3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x+1=\dfrac{9}{2}\\y+2=6\\z-3=\dfrac{15}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\y=4\\z=\dfrac{21}{2}\end{matrix}\right.\)
Tìm x , y , z bt :
a, x/10 = y/6 = z/21 và 5 . x + y - 2 . z = 28
b, 3 . x = 2 . y ; 7 . y = 5 . z và x - y + z = 32
c, 2 . x = 3 . y = 5 . z và x + y - z = 32
d, x - 1/2 = y - z/3 = z - 3/4 và 2 . x + 3 . y - z = 50
a, Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\) và \(5x+y-2z=28\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
+) \(\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
+) \(\dfrac{y}{6}=2\Rightarrow y=12\)
+) \(\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy ...
b, Ta có:
\(3x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
\(7y=5z\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\)
Ta lại có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\) và \(x-y+z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
+) \(\dfrac{x}{10}=2\Rightarrow x=20\)
+) \(\dfrac{y}{15}=2\Rightarrow y=30\)
+) \(\dfrac{z}{21}=2\Rightarrow z=42\)
Vậy ...
Tìm x, y, z :
a) x/3 = y/2 và 2x^3 + 3y^3 = 7
b) x/3 = y/2 ; x/4 = z/5 và x+ y - z = 10
c) x/2 = y/5 ; y/3 = z/2 và 2x + 3y - 4z = 34
\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{4}=\dfrac{z}{5}\) và \(x+y-z=10\)
Ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{8};\dfrac{x}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{12}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}\) và \(x+y-z=10\)
AD tính chất DTS bằng nhau ta có:
\(\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)
+) \(\dfrac{y}{8}=2\Rightarrow y=16\)
+) \(\dfrac{x}{12}=2\Rightarrow x=42\)
+) \(\dfrac{z}{15}=2\Rightarrow z=30\)
Vậy \(x=42;y=16;z=30\)
c,\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\) và \(2x+3y-4z=34\)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
Ta lại có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\) và \(2x+3y-4z=34\)
AD tính chất DTS bằng nhau ta có:
\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)
+) \(\dfrac{2x}{12}=2\Rightarrow x=12\)
+) \(\dfrac{3y}{45}=2\Rightarrow y=30\)
+) \(\dfrac{4z}{40}=2\Rightarrow z=20\)
Vậy \(x=12;y=30;z=20\)
\(\)
x/3=y/4;y/3=z/5 và 2x-3y+z=6
x/3=y/4;y/5=z/7 và 2x +3y-z=186
x/2=y/3=z/5 và xyz=1920
a, \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\&2x-3y+z=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{y}{12}\\\dfrac{y}{12}=\dfrac{z}{20}\end{matrix}\right.\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\&2x-3y+z=6\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
Vậy, ...
b, \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{7}\&2x+3y-z=186\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{28}\end{matrix}\right.\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\&2x+3y-z=186\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=3\\\dfrac{y}{20}=3\\\dfrac{z}{28}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Vậy, ...
c, Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=2k.3k.5k=1920\Rightarrow30k^3=1920\)
\(\Rightarrow k^3=64\Rightarrow k=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.4=8\\y=3.4=12\\z=5.4=20\end{matrix}\right.\)
Vậy,...
a) x/3 = y/4 ; y/4 = z/5 và 2x - 3y + z = 6
<=> x/3 = y/4 <=> x/12 = y/16 (1)
<=> y/4 = z/5 <=> y/16 = z/20 (2)
Từ (1) và (2) suy ra : x/12 = y/16 = z/20
<=> 2x/24 = 3y/48 = z/20
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
2x/24 = 3y/48 = z/20 = 2x - 3y + z / 24 - 48 + 20 = -6/4 = -3/2
<=> x/3 = -3/2 => x = -9/2
<=> y/4 = -3/2 => y = -6
<=> z/5 = -3/2 => z = -15/2
Vậy x = -9/2 , b = -6 , z = -15/2 .
Bài 1 : Tìm x biết :
a) x + 2 / 3 = y - 7 / 5 và x + y = 21
b) x + 5 / 2 = y - 2 / 3 và x - y + -10
c) 2 . x / 3 = 3 . y / 4 = 5 . z /6 và x - y + z = 41
d) x : y : z = 2 / 3 : 3 / 5 : 3 / 4
Giải:
a) Theo đề ra, ta có:
\(\dfrac{x+2}{3}=\dfrac{y-7}{5}\) và \(x+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+2}{3}=\dfrac{y-7}{5}=\dfrac{x+2+y-7}{3+5}=\dfrac{16}{8}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+2}{3}=2\\\dfrac{y-7}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2=6\\y-7=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=17\end{matrix}\right.\)
Vậy ...
b) Tương tự ý a)
c) Theo đề ra, ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{5z}{6}\) và \(x-y+z=41\)
\(\Leftrightarrow\dfrac{30x}{45}=\dfrac{30y}{40}=\dfrac{30z}{36}\Leftrightarrow\dfrac{x}{45}=\dfrac{y}{40}=\dfrac{z}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau rồi tính
d) \(x:y:z=\dfrac{2}{3}:\dfrac{3}{5}:\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{\dfrac{20}{60}}=\dfrac{y}{\dfrac{36}{60}}=\dfrac{z}{\dfrac{45}{60}}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{36}=\dfrac{z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau rồi tính.
Chúc bạn học tốt!!!
Tìm x , y , z biết
a)x/y=9/7 ; y,z=7/3 và x-y+z=-15
b)x/y=7/20 ; y/z=5/8 và 2x+5y-2z=100
c)x/12=y/9=z/5 và xyz=20
d)x/5=y/7=z/3 và x mũ 2 + y mũ 2 + z mũ 2=585
a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)
=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20
=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)
=>\(k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z
Tính giá trị biểu thức :
a, A = 15x^5 y^3 : 10xy^2 tại x = -3 và y = 2/3
b, B = - ( x^3 y^5 z^2 ) : ( -x^2 y^3 z )^3 tại x = 1,y = -1 và z = 100
c, C = 3/4 ( x-2 )^3 : -1/2 ( 2-x ) tại x = 3
d, D = ( x-y+z )^5 : ( -x + y - z )^3 tại x = 17, y = 16 và z = 1
Giúp mk vs ạ mk đang cần gấp
Bài 2 :
a, x : 5 = y : 4 = z : 3 và x - y = 3
b, x/2 = y/3 ; y/5 = z/4 và x -y + z = - 49
a) Giải:
Ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\) và x - y = 3
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{5-4}=\frac{3}{1}=3\)
+) \(\frac{x}{5}=3\Rightarrow x=15\)
+) \(\frac{y}{4}=3\Rightarrow y=12\)
+) \(\frac{z}{3}=3\Rightarrow z=9\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(15;12;9\right)\)
b) Giải:
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) và x - y + z = -49
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
+) \(\frac{x}{10}=-7\Rightarrow x=-70\)
+) \(\frac{y}{15}=-7\Rightarrow y=-105\)
+) \(\frac{z}{12}=-7\Rightarrow z=-84\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-70;-105;-84\right)\)
a) x : 5 = y : 4 = z : 3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{5-4}=\frac{3}{1}=3\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{5}=3\rightarrow x=3\cdot5=15\\\frac{y}{4}=3\rightarrow y=3\cdot4=12\\\frac{z}{3}=3\rightarrow z=3\cdot3=9\end{matrix}\right.\)
b) \(\frac{x}{2}=\frac{y}{3}\rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{10}=-7\rightarrow x=\left(-7\right)\cdot10=-70\\\frac{y}{15}=-7\rightarrow y=\left(-7\right)\cdot15=-105\\\frac{z}{12}=-7\rightarrow z=\left(-7\right)\cdot12=-84\end{matrix}\right.\)
Ta có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)và x-y=3
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{5-4}=\frac{3}{1}=3\)
Vì \(\frac{x}{5}=3\Rightarrow x=15\)
Vì \(\frac{y}{4}=3\Rightarrow y=12\)
Vì \(\frac{z}{3}=3\Rightarrow z=9\)
Vậy x=15 ; y=12 ; z=9
Tìm x , y , z biết
x phần 2 = y phần 3 = z phần 5 và x ^ 2 + y ^ 2 - z ^ 2 = -12
x phần 2 = y phần 3 ; y phần 4 = z phần 5 và x + y - x = 10
Hix trình bày đề thiếu chuyên nghiệp :<<
Chỉnh đề: Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và \(x^2+y^2-z^2=-12\)
b) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và \(x+y-z=10\)
Giải:
a) Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2+y^2-z^2}{4+9-25}=\dfrac{-12}{-12}=1\)
Vậy \(\left\{{}\begin{matrix}x^2=1.4=4\Rightarrow x=\pm2\\y^2=1.9=9\Rightarrow y=\pm3\\z^2=1.25=25\Rightarrow z=\pm5\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{40}=\dfrac{y}{60}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{60}=\dfrac{z}{75}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{40}=\dfrac{y}{60}=\dfrac{z}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{x}{40}=\dfrac{y}{60}=\dfrac{z}{75}=\dfrac{x+y-z}{40+60-75}=\dfrac{10}{25}=\dfrac{2}{5}\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{2}{5}.40=16\\y=\dfrac{2}{5}.60=24\\z=\dfrac{2}{5}.75=30\end{matrix}\right.\)
a) Ta có:
x24=y29=z225=x2+y2−z24+9−25=−12−12=1x24=y29=z225=x2+y2−z24+9−25=−12−12=1
Vậy ⎧⎪⎨⎪⎩x2=1.4=4⇒x=±2y2=1.9=9⇒y=±3z2=1.25=25⇒z=±5{x2=1.4=4⇒x=±2y2=1.9=9⇒y=±3z2=1.25=25⇒z=±5
b) y4=z5⇒y60=z75y4=z5⇒y60=z75 (2)
Từ (1) và (2) suy ra x40=y60=z75=x+y−z40+60−75=1025=25x40=y60=z75=x+y−z40+60−75=1025=25
Vậy