Thu gọn biểu thức 343 a 3 b 6 - 125 3 ta được
A. - 7 ab 2 5
B. 7 ab 2 5
C. - ab 2 5
D. ab 2 5
Biểu thức thu gọn của \(P=\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}-\sqrt[3]{ab}\) là
\(P=\dfrac{a^{\dfrac{1}{3}}\cdot\sqrt{b}+b^{\dfrac{1}{3}}\cdot\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}-\sqrt[3]{ab}\)
\(=\dfrac{a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{2}}+b^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}}{a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
\(=\dfrac{a^{\dfrac{2}{6}}\cdot b^{\dfrac{3}{6}}+a^{\dfrac{3}{6}}\cdot b^{\dfrac{2}{6}}}{a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
\(=\dfrac{a^{\dfrac{2}{6}}\cdot b^{\dfrac{2}{6}}\left(a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}\right)}{a^{\dfrac{1}{6}}+b^{\dfrac{1}{6}}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
\(=a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}-a^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{3}}\)
=0
a) Thu gọn biểu thức b) Thu gọn biểu thức A = 2x + 7 − 3 B = 3x −8 −12
Lời gải:
$A=2x+7-3=2x+4$
$B=3x-8-12=3x-20$
Luyện tập – Vận dụng 3
Rút gọn mỗi biểu thức sau:
a) \(\sqrt[3]{{\frac{{125}}{{64}}}}.\sqrt[4]{{81}}\)
b) \(\frac{{\sqrt[5]{{98}}.\sqrt[5]{{343}}}}{{\sqrt[5]{{64}}}}\)
a: \(=\dfrac{5}{4}\cdot3=\dfrac{15}{4}\)
b: \(=\sqrt[5]{\dfrac{98}{64}\cdot343}=\sqrt[5]{\left(\dfrac{7}{2}\right)^5}=\dfrac{7}{2}\)
Cho biểu thức : A=(4x+3)2- 2x(x+6)-5(x-2)(x+2)
a) Thu gọn biểu thức A
b) Tính giá trị biểu thức A tại A= -2
c) Chứng minh biểu thức A luôn dương
A=(4x+3)2-2x(x+6)-5(x-2)(x+2)
A=16x2+24x+9-2x2-12x-5(x2-4)
A=16x2+24x+9-2x2-12x-5x2+20
A=(16x2-2x2-5x2)+(24x-12x)+(9+20)
A=9x2+12x+29
thay x=-2 vào A ta đc
A=9.(-2)2+12.(-2)+29
A=9.4-24+29
A=36-24+29
A=41
Thu gọn biểu thức
a) A=2+22+23+...+2100
b) B=6+62+63+...+6300
Cho biểu thức:
M = x + 2 x - 3 + x + 1 x - 2 - 3 . x - 1 x - 5 x + 6 với x ≥ 0 , x ≠ 4 , x ≠ 9
a) Thu gọn biểu thức M.
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
Thu gọn biểu thức:
a) a.b^5.c: ( abc^2 )^4 .a^9 .c^11
b) a^2 .b^3 .( a^4 .b^2 )^3 .a^6 : a^12 .b
5 tk
A. Bài 4: a, Thu gọn biểu thức -1/x2yz +5x2yz - x2yz và tính giá trị biểu thức tại x = -1, y = 2 và z = -1
B. b, Thu gọn biểu thức –x 2 z + 3x2 z – 7x2 z và tính giá trị biểu thức tại x = -1, z = -2
c, Thu gọn biểu thức 5xy2 + 0,5xy2 – 3xy2 và tính giá trị biểu thức tại x = 2, y =1 d, Thu gọn biểu thức -2y2 z 2 + 8y2 z 2 – y 2 z 2 và tính giá trị biểu thức tại y = -2, z = 0
Bài 4:
b: \(=x^2z\left(-1+3-7\right)=-5x^2z=-5\cdot\left(-1\right)^2\cdot\left(-2\right)=10\)
c: \(=xy^2\left(5+0.5-3\right)=2.5xy^2=2.5\cdot2\cdot1^2=5\)
A) Tìm các số nguyên x và y biết:
\(\dfrac{2}{3}\) + \(\dfrac{1}{x}\) = \(\dfrac{y}{6}\) (x ≠ 0)
B) Cho A=4+42+43+...+42021+42022
1)Thu gọn biểu thức A.
2)Biểu thức A có chia hết cho 20 không? Vì sao?