Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2019 lúc 4:09

Đáp án: C

Nguyễn Quỳnh Nga
Xem chi tiết
Nguyễn Quỳnh Nga
29 tháng 6 2017 lúc 19:32

giúp mk với mk cần gấp

Thiên An
30 tháng 6 2017 lúc 17:04

Ta có định lý sau:

Hệ  \(\hept{\begin{cases}a_1x+b_1y=c_1\\a_2x+b_2y=c_2\end{cases}}\)  

- Có 1 nghiệm duy nhất khi  \(\frac{a_1}{a_2}\ne\frac{b_1}{b_2}\)

- Có vô số nghiệm khi  \(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\)

Do đó  \(\hept{\begin{cases}2x+y=5\\mx-y=-7\end{cases}}\)   có 1 nghiệm duy nhất  \(\Leftrightarrow\)  \(\frac{2}{m}\ne\frac{1}{-1}\)  \(\Leftrightarrow\)  \(m\ne-2\)

Hệ pt ko thể có vô số nghiệm vì  \(\frac{1}{-1}\ne\frac{5}{-7}\)

Anh Quynh
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 10 2021 lúc 16:53

\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)

Hải Yến
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 8:46

Thay k=1 và HPT ta có: 

\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;-1)

Khang Diệp Lục
3 tháng 2 2021 lúc 9:17

b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)

Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)

Thay vào biểu thức đã cho ở đề bài ta có :

 \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)

\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)

Sau một hồi bấm máy tính Casio thì ra k=2

Vậy k=2 thì Thỏa mãn yêu cầu đề bài

 

 

Khang Diệp Lục
3 tháng 2 2021 lúc 9:18

Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@

Ryan Nguyễn
Xem chi tiết
trần lê tuyết mai
Xem chi tiết
Lê Anh Khoa
21 tháng 4 2022 lúc 21:04

đặt x+y = u ; xy = v đk: u2 ≥ 4v 

\(\left\{{}\begin{matrix}u+v=5\\u^2-v=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u^2+u-12=0\left(1\right)\\u+v=5\left(2\right)\end{matrix}\right.\)

từ pt 1 => \(\left[{}\begin{matrix}u=-4\\u=3\end{matrix}\right.\)

nghiệm u = - 4 loại 

u = 3 nhận => v = 2 

<=> x+y = 3 ; xy = 2 

đặt x+y = S ; xy = P đk: S2 ≥ 4P 

=> x và y là nghiệm của phương trình 

X2 - SX + P = 0 

= X2 - 3X + 2 = 0 

=> \(\left[{}\begin{matrix}X=2\\X=1\end{matrix}\right.\)

vậy (x;y) = {(1;2);(2;1)} 

 

minmin
Xem chi tiết
nguyen trang
13 tháng 2 2020 lúc 13:55

x=2 y=3

Khách vãng lai đã xóa
minmin
13 tháng 2 2020 lúc 22:52

giúp mình với mình cần nộp trong ngày 17/2/2020

Khách vãng lai đã xóa
dcv_new
20 tháng 4 2020 lúc 8:07

Giải mấy bài này mệt ghê ~

a,Thay m = 5 vào PT \(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)

\(< =>\hept{\begin{cases}3x-5y=-9\\5x+2y=16\end{cases}}\)

\(< =>\hept{\begin{cases}15x-25y=-45\\15x+6y=48\end{cases}}\)

\(< =>\hept{\begin{cases}31y=93\\3x-5y=-9\end{cases}}\)

\(< =>\hept{\begin{cases}y=3\\3x=6\end{cases}}\)

\(< =>\hept{\begin{cases}y=3\\x=2\end{cases}}\)

b,Ta thay : \(\hept{\begin{cases}y=3\\x=2\end{cases}}\)vào PT ta đc :

\(\hept{\begin{cases}6-3m=-9\\2m+6=16\end{cases}}\)

\(< =>\hept{\begin{cases}m=5\\m=5\end{cases}}\)(đề sai ? hay do mk ngu ?)

c,bạn thay nghiệm vào là đc nhé <3

Khách vãng lai đã xóa
NV Phú
Xem chi tiết
NV Phú
15 tháng 3 2021 lúc 20:46

ai giải mk vs ạ

 

Cherry
15 tháng 3 2021 lúc 20:48
answer-reply-imageBn tham khảo nhé!
Uyên Phạm
15 tháng 3 2021 lúc 20:50

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2019 lúc 6:09

Giải bài 5 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Đưa hệ phương trình về hệ dạng tam giác bằng cách khử dần ẩn số.

Nhân phương trình (1) với 2 rồi cộng với phương trình (2) và nhân phương trình (1) với (3) rồi trừ đi phương trình (3) ta được:

Giải bài 5 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Giải hệ phương trình trên ta được Giải bài 5 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Vậy hệ phương trình có nghiệm Giải bài 5 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Tô Mì
Xem chi tiết
Lê Anh Khoa
29 tháng 3 2022 lúc 14:11

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

Aliza Hime
29 tháng 3 2022 lúc 14:18

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)