tìm hằng số a cho:
x^3+ax^3-4 chia hết cho x^2+4x+4
Xác định hằng số A sao cho
x^3+ax^2-4 chia hết cho x^2+4x+4
Tìm các số a,b sao cho:x^4+2x^3-3x^2+ax+b chia cho x^2-x+2 dư -4x-1
xác định hằng số a sao cho
a, \(4x^2-6x+a\)chia hết cho x-3
c, \(x^3+ax^2-4\) chia hết cho \(x^2+4x+4\)
Lời giải:
a) Theo định lý Bê-du về phép chia đa thức, để \(f(x)=4x^2-6x+a\vdots x-3\) thì \(f(3)=0\)
\(\Leftrightarrow 4.3^2-6.3+a=0\)
\(\Leftrightarrow 18+a=0\Leftrightarrow a=-18\)
b) Ta thấy: \(x^2+4x+4=(x+2)^2\) nên trước tiên để đa thức đã cho chia hết cho $x^2+4x+4$ thì nó phải chia hết cho $x+2$
Theo định lý Bê-du, để đa thức chia hết cho $x+2$ thì:
\(f(-2)=(-2)^3+a(-2)^2-4=0\)
\(\Leftrightarrow -12+4a=0\Leftrightarrow a=3\)
Thử lại:
\(x^3+ax^2-4=x^3+3x^2-4=x^2(x-1)+4(x^2-1)\)
\(=(x-1)(x^2+4x+4)\vdots x^2+4x+4\) (thỏa mãn)
Vậy $a=3$
xác định hằng đẳng số a sao cho:
a, 4x2 -6x + a chia hết cho x-3
b, 2x2 +x+a chia hết cho x+3
c, x3 + ax2 - 4 chia hết cho x2 +4x + 4
a,Để \(4x^2-6x+a=\left(x-3\right)\left(4x+6\right)+\left(a+18\right)⋮\left(x-3\right)\)
\(\Rightarrow x+18=0\Rightarrow x=-18\)
Các câu dưới tương tự bn tự làm nha!
sao lại có (x+3) (4x-6) +(a+18): (x-3)
Xác định hằng số a sao cho :
a, 2x2 + ax + 1 chia cho x-3 dư 4
b,ax5 + 5x4 - 9 chia hết cho x-1
c, x3 + ax2 - 4 chia hết cho x2 + 4x+4
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số
1,xác định hằng số a sao cho:
a,x3+ax2-4 chia hết cho x2+4x+4
Xác định hằng số a sao cho
\(2x^2+x+a\) chia hết cho x+3
\(4x^2-6x+a\) chia hết cho x-3
\(x^3+ax^2-4\) chia hết cho \(x^2+4x+4\)
4x^2 -6x +a =4x(x-3)+6x +a =4x(x-3)+6(x-3) +a+18
để \(\left(4x^2-6x+a\right)⋮\left(x-3\right)\Rightarrow a=-18\)
a) Đặt \(f_{\left(x\right)}=2x^2+x+a\)
Để \(f_{\left(x\right)}⋮x+3\)
\(thì\Rightarrow f_{\left(x\right)}:x+3\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(-3\right)}=0\)
\(\Rightarrow2\cdot\left(-3\right)^2+\left(-3\right)+a=0\\ \Rightarrow15+a=0\\ \Rightarrow a=-15\)
Vậy để \(2x^2+x+a⋮x+3\)
\(thì\text{ }a=-15\)
b) Đặt \(f_{\left(x\right)}=4x^2-6x+a\)
Để \(f_{\left(x\right)}⋮x-3\)
\(thì\text{ }f_{\left(x\right)}:x-3\text{ }dư\text{ }0\)
\(\Rightarrow\) Theo định lí \(Bê-du:f_{\left(3\right)}=0\)
\(\Rightarrow4\cdot3^2-6\cdot3+a=0\\ \Rightarrow18+a=0\\ \Rightarrow a=-18\)
Vậy để \(4x^2-6x+a⋮x-3\)
thì \(a=-18\)
c) Đặt \(f_{\left(x\right)}=x^3+ax^2-4\)
Để \(f_{\left(x\right)}⋮x^2+4x+4\)
\(thì\text{ }f_{\left(x\right)}⋮\left(x+2\right)^2\\ \Rightarrow f_{\left(x\right)}:\left(x+2\right)^2\text{ }dư\text{ }0\)
\(\Rightarrow Theo\text{ }định\text{ }lí\text{ }Bê-du:\text{ }f_{\left(-2\right)}=0\\ \Rightarrow\left(-2\right)^3+a\cdot\left(-2\right)^2-4=0\\ \Rightarrow-12+4a=0\\ \Rightarrow4a=12\\ \Rightarrow a=3\)
Vậy để \(x^3+ax^2-4⋮x^2+4x+4\)
\(thì\text{ }a=3\)
Xác định hằng số a sao Chợ x3 + ax2 - 4 chia hết cho x2 + 4x + 4
Gọi thương của phép chia là f(x)
Ta có : \(x^3+ax^2-4=f\left(x\right)\cdot\left(x^2+4x+4\right)\)
\(\Leftrightarrow x^3+ax^2-4=f\left(x\right)\cdot\left(x+2\right)^2\)
Với \(x=-2\), ta có :
\(\left(-2\right)^3+a.\left(-2\right)^2-4=f\left(x\right).0\)
\(\Leftrightarrow-8+4a-4=0\)
\(\Leftrightarrow4a=12\)
\(\Leftrightarrow a=3\)
Vậy a = 3
Tìm hệ số a sao cho : \(x^3+ax^2-4\) chia hết cho \(x^2+4x+4\)
Đặt \(P\left(x\right)=x^3+ax^2-4\) ; \(Q\left(x\right)=x^2+4x+4\)
Do \(Q\left(x\right)=\left(x+2\right)^2\) có 1 nghiệm \(x=-2\) nên \(P\left(x\right)\) chia hết cho \(Q\left(x\right)\) khi \(P\left(-2\right)=0\)
\(\Rightarrow\left(-2\right)^3+a.\left(-2\right)^2-4=0\)
\(\Rightarrow a=3\)
Thử lại: \(P\left(x\right)=x^3+3x^2-4=\left(x-1\right)\left(x^2+4x+4\right)\) chia hết \(x^2+4x+4\) (thỏa mãn)
Vậy \(a=3\)