Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan uyển nhi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 21:59

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều

Phương Linh
Xem chi tiết
Thu trang
22 tháng 11 2023 lúc 14:38


ý của bạn là cotang đk ạ chứ mình thấy cos nó sai ýloading...

Nguyễn Thị An
Xem chi tiết
Lê Nguyên Hạo
10 tháng 8 2016 lúc 16:20

ta có: A\2+B\2 = π\2 - C\2 

⇒ tan(A\2+B\2) = tan(π\2 -C\2) 

⇒ (tanA\2 +tanB\2)\[1 - tanA\2.tanB\2] = cotgC\2 

⇒ (tanA\2 +tanB\2).tanC\2 = [1 - tanA\2.tanB\2] 

⇒ tanA\2.tanB\2 + tanB\2.tanC\2 + tanC\2.tanA\2 = 1 

............đpcm............

tran lan vy
Xem chi tiết
Hoàng Văn Thái
Xem chi tiết
tran lan vy
Xem chi tiết
alibaba nguyễn
29 tháng 6 2017 lúc 8:41

Đề sai. Giả sử tam giác là tam giác đều thì ta có:

\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)

Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.

alibaba nguyễn
29 tháng 6 2017 lúc 8:58

Sửa đề:

\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)

\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)

\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)

Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)

\(\Rightarrow A=B\)

Thế lại hệ ban đầu ta được

\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)

Dấu = xảy ra khi \(A=C\)

Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.

Lê Hồng Ngọc
Xem chi tiết
trần minh khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:19

b: \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)

phan tuấn anh
Xem chi tiết
alibaba nguyễn
20 tháng 4 2017 lúc 8:40

Tự chứng minh từng cái này rồi suy ra cái đó nhé b.

Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)

Tương tự ta suy ra: 

\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)

Tiếp theo chứng minh:

\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)

\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)

\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)

Từ (1), (2), (3), (4) suy được điều phải chứng minh

Trịnh Lê Na
18 tháng 4 2017 lúc 8:01

ko hiểu ( vì em mới học lớp 6)

ngonhuminh
20 tháng 4 2017 lúc 16:48

trinh le na

cho bạn 4 năm nữa cũng chưa hiểu đâu

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Ngọc Lộc
25 tháng 1 2021 lúc 21:51

Ta có : \(S=\dfrac{1}{2}SinB.ac=b^2-a^2-c^2+2ac\)

\(\Rightarrow\dfrac{1}{2}SinB.ac=-\left(a^2+c^2-b^2\right)+2ac\)

\(CosB=\dfrac{a^2+c^2-b^2}{2ac}\)

\(\Rightarrow a^2+c^2-b^2=2ac.CosB\)

\(\Rightarrow\dfrac{1}{2}SinB.ac=2ac-2ac.\cos B\)

\(\Rightarrow SinB=4-4\cos B\)

\(\Rightarrow SinB+4\cos B=4\)

Lại có : \(\sin^2B+\cos^2B=1\)

- Giair hệ ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}\cos B=1\\\cos B=\dfrac{15}{17}\end{matrix}\right.\\\left[{}\begin{matrix}sinB=0\\sinB=\dfrac{8}{17}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanB=0\\tanB=\dfrac{8}{15}\end{matrix}\right.\)

Mà 3 điểm A, B, C là 1 tam giác .

=> TanB = 8/15 .