1-3x+3x^2-x^3 tại x=11
3A. Tính giá trị biểu thức: a) A = (x²-3x² + 3x)² -2(x²-3x² + 3x)+1 tại x= 11; b) B=(x-2y)(x² + 2xy + 4y²)-6xy(x-2y) tai x=3;y=; 5A. Phân tích đa thức thành nhân tử a) x² +1-2x²; c) y²-4x² + 4x-1; b)x²-y²-5y+5x; d) x (2+x)²-(x+2)+1-x² 6A. Phân tích đa thức thành nhân tử: (a) x² −8x+7; b) 2x² -5x+2; c) x²-5x² +8x-4; d) x² +64.
Tìm x 5/11-3x=2/3x-2;x-11/x-3=2/3;-4x-3/4=1-3x/3 giải giúp em nha
tính giá trị của biểu thức B= x^3 - 3x^2 + 3x + 1019 tại x=11
\(\Leftrightarrow B=\left(x^2-3x^2+3x-1\right)+1010=\left(x-1\right)^2+1010=10^3+1010=100+1010=1110\)
Câu 1 Giá trị của biểu thức x^3-3x^2+3x-1 tại x=11 là
A.1001 B.1002 C.1000 D.999
Câu 2 Phân tích đa thức x^3-4x ta được?
Câu 3 Kết quả phép tính chia đa thức A=2x^2+3x-2 cho đa thức B=2x-1
Câu 4 Phân thức 3x-6/x^2-4 được rút gọn thành ?
Câu 1: C
Câu 2: =x(x-2)*(x+2)
Áp dụng hằng đẳng thức, tính giá trị biểu thức:
a.A=x^3-3x^2+3x+1012 tại x=11
b.B=x^3-6x^2+12x-108 tại x=12
c.C=x^3+6x^2y+12xy^2+8y^3 tại x=-2y
d.D=x^3+9x^2+27x+2027 tại x=-23
\(...=A=x^3-3x^2+3x-1+1013\)
\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)
\(...B=x^3-6x^2+12x-8-100\)
\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)
\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)
\(...D=x^3+9x^2+27x+9+2018\)
\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)
a) \(A=x^3-3x^2+3x+1012\)
\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)
\(A=\left(x-1\right)^3+1013\)
Thay x=11 vào A ta có:
\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)
b) \(B=x^3-6x^2+12x-108\)
\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)
\(B=\left(x-2\right)^3-100\)
Thay x=12 vào B ta có:
\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)
c) \(C=x^3+6x^2y+12xy^2+8y^3\)
\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)
\(C=\left(x+2y\right)^3\)
Thay x=-2y vào C ta được:
\(C=\left(-2y+2y\right)^3=0^3=0\)
d) \(D=x^3+9x^2+27x+2027\)
\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)
\(D=\left(x+3\right)^3+2000\)
Thay x=-23 vào D ta có:
\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)
Timf `x`:
`(x - 2)/3 = (x + 1)/4`
`(x - 2) . 4 = (x + 1) . 3`
`<=> 4x - 8 = 3x + 3`
`<=> 4x - 3x = 3 + 8`
`<=> (4 - 3)x = 11`
`=> x = 11`
`(x - 2)/3 = (x + 1)/4`
`(x - 2) . 4 = (x + 1) . 3`
`<=> 4x - 8 = 3x + 3`
`<=> 4x - 3x = 3 + 8`
`<=> (4 - 3)x = 11`
`=> x = 11`
`=>` `x = 11`
giải phương trình sau
1/ ( x-3) ^2 =16
2/ (3x-1)^3 =8
3/ (x-11)^3 =-27
4/ x^3 -3x^2 +3x-1'
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
4) \(x^3-3x^2+3x-1=-64\)
\(\Rightarrow x^3-3x^2+3x+63=0\\ \Rightarrow\left(x^3+3x^2\right)-\left(6x^2+18x\right)+\left(21x+63\right)=0\\ \Rightarrow x^2\left(x+3\right)+6x\left(x+3\right)+21\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x^2+6x+21\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x^2+6x+21=0\end{matrix}\right.\)
\(x+3=0\\ \Rightarrow x=-3\)
\(x^2+6x+21=0\\ \Rightarrow\left(x^2+6x+9\right)+12=0\\ \Rightarrow\left(x+3\right)^2+12=0\)
Vì \(\left(x+3\right)^2\ge0;12>0\Rightarrow\left(x+3\right)^2+12>0\Rightarrow x^2+6x+21vônghiệm\)
Vậy \(x=-3\)
a) -(x-y)(x2+xy-1)
b) x2(x-1)-(x2+1)(x-y)
c) (3x-2)(2x-1)+(-5x-1)(3x+2)
d) (3x-5)(2x+11)-(2x3)(3x+7)
Bài 2: Tính giá trị biểu thức
C=x(x2-y)-x2(x+y)+y(x2-x) tại x=1/2, y=-1
a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)
=-(x3-xy2-x+y)
=-x3+xy2+x-y
b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y
=-x2+x2y-x+y
c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2
=-9x2-20x
d) hình như bạn ghi lỗi
Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)
=x3-xy-x3-x2y+x2y-xy
=-2xy
Thay x=1/2,y=-1 vào C, ta có:
C=-2.1/2.(-1)=1
Vậy C=1 khi x=1/2 và y=-1.
1.tìm x,biết
a,8(x-2)-2(3x-4)=2
b,10(3x-2)-3(5x+2)+5(11-4x)=25
c,2x(x+1)-x^2(x+2)+x^3-x+4=0
d,4x(3x+2)-6x(2x+5)+21(x-1)=0
2.Rút gọn rồi tính giá trị bt
a,P=(4x^2-3y)2y-(3x^2-4y)3y tại x=-1,y=2
b,Q=4x^2(5x-3y)-x^2(4x+y) tại x=-1,y=2
c,H=x(x^3-y)+x^2(y-x^2)-y(x^2-3x) tại x=1/4,y=2012
m.n giúp mik vs///
Bài 1:
a) \(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Rightarrow2\left[4\left(x-2\right)-\left(3x-4\right)\right]=2\)
\(\Rightarrow4\left(x-2\right)-3x+4=0\)
\(\Rightarrow4x-8-3x+4=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
b) \(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Rightarrow5\left[2\left(3x-2\right)+11-4x\right]-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(6x-4+11-4x\right)-3\left(5x+2\right)=25\)
\(\Rightarrow5\left(2x+7\right)-3\left(5x+2\right)=25\)
\(\Rightarrow10x+35-15x-6=25\)
\(\Rightarrow-5x+29=25\)
\(\Rightarrow-5x=25-29\)
\(\Rightarrow-5x=-4\)
\(\Rightarrow x=\dfrac{4}{5}\)
c) \(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Rightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Rightarrow x+4=0\)
\(\Rightarrow x=-4\)
d) \(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Rightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Rightarrow-x-21=0\)
\(\Rightarrow x=-21\)
Bài 2:
a) \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(P=8x^2y-6y^2-9x^2y+12y^2\)
\(P=-x^2y+6y^2\)
Thay x = -1 ; y = 2 vào P ta được
\(P=-\left(-1\right)^2.2+6.2^2\)
\(P=-2+24=22\)
b) \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(Q=20x^3-12x^2y-4x^3-x^2y\)
\(Q=16x^3-13x^2y\)
Thay x = -1 ; y = 2 vào Q ta được
\(Q=16\left(-1\right)^3-13\left(-1\right)^2.2\)
\(Q=-16-26\)
\(Q=-42\)
c) \(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(H=x^4-xy+x^2y-x^4-x^2y+3xy\)
\(H=2xy\)
Thay x = 1/4 ; y = 2012 vào H ta được
\(H=2.\dfrac{1}{4}.2012\)
\(H=1006\)
1.a)\(8\left(x-2\right)-2\left(3x-4\right)=2\)
\(\Leftrightarrow8x-16-6x+8=2\)
\(\Leftrightarrow2x-8=2\Leftrightarrow2x=10\Leftrightarrow x=5\)
b)\(10\left(3x-2\right)-3\left(5x+2\right)+5\left(11-4x\right)=25\)
\(\Leftrightarrow30x-20-15x-6+55-20x=25\)
\(\Leftrightarrow-5x+29=25\Leftrightarrow-5x=-4\Leftrightarrow x=\dfrac{4}{5}=0,8\)
\(c)2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+4=0\)
\(\Leftrightarrow2x^2+2x-x^3-2x^2+x^3-x+4=0\)
\(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(d)4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
\(\Leftrightarrow12x^2+8x-12x^2-30x+21x-21=0\)
\(\Leftrightarrow-x-21=0\Leftrightarrow-x=21\Leftrightarrow x=-21\)
2.
a)\(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y\)
\(\Leftrightarrow8x^2y-6y^2-9x^2y-12y^2\)
\(\Leftrightarrow x^2y-18y^2\)
tại x=-1 , y=2
ta có:\(x^2y-18y^2=\left(-1\right)^2.2-18.2^2=2-72=-70\)
vậy \(P=\left(4x^2-3y\right)2y-\left(3x^2-4y\right)3y=-70\) tại x=-1,y=2
b)\(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(\Leftrightarrow20x^3-12x^2y-4x^3-x^2y\)
\(\Leftrightarrow17x^3-13x^2y\)
tại x=-1,y=2
ta có:\(17x^3-13x^2y=17\left(-1\right)^3-13\left(-1\right)^2.2=-17-26=-43\)
vậy \(Q=4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=-43\)
c)\(H=x\left(x^3-y\right)+x^2\left(y-x^2\right)-y\left(x^2-3x\right)\)
\(\Leftrightarrow x^4-xy+x^2y-x^3-x^2y+3xy\)
\(\Leftrightarrow x^4+2xy-x^3\)
tại x=1/4 và y=2012
ta có:\(x^4+2xy-x^3=\left(\dfrac{1}{4}\right)^4+2.\dfrac{1}{4}.2012-\left(\dfrac{1}{4}\right)^3\approx1006\)
a. 8(x-2)-2(3x-4)=2
8x-16-6x-8 =2
(8x-6x)-(16-8)=2
2x-2 =2
2x =2+2
2x =4
x =\(\dfrac{4}{2}\)=2