Gọi m 1 , m 2 là các giá trị của m để hệ phương trình y - 2 x - y - 1 = 0 x 2 - 2 x + y 2 - 4 y + 5 = m 2 có đúng 4 nghiệm nguyên. Khi đó m 1 2 + m 2 2 bằng
A. 10
B. 9
C. 20
D. 4
cho hệ phương trình:{mx-y=1 và x+my=2
1,giải hệ phương trình theo tham số m
2,gọi nghiệm của hệ phương trình là(x,y). Tìm các giá trị m để x+y=1
3, tìm đẳng thức liên hệ giưa x và y không phụ thuộc vào m
cho phương trình \(x^2-2\left(m+2\right)x+m+1=0\)
a, giải phương trình khi m = \(\dfrac{1}{2}\)
b, tìm các giá trị của m để phương trình có 2 nghiệm trái dấu
c, gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để \(x_1\left(1-2x_2\right)+x_2\left(1-2x_2\right)=m^2\)
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}2x+y=3m-5\\x-y=2\end{matrix}\right.\)(m là tham số)
a, giải hệ phương trình với m=2
b, gọi nghiệm của hệ là (x;y), tìm giá trị của m để x2+y2 đạt giá trị nhỏ nhất
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Bài : Cho hệ phương trình (m + 1)x - y = m + 1 và x + (m -1)y = 2 ( Với m là tham số )
a: Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x - 2y = 2
b: Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x:y) vơi x,y có giá trị nguyên
Cho hệ phương trình : x - 2y = 3 - m và 2x + y =3(m+2). Gọi ngiệm của hệ phương trình là (x,y) .
Tìm m để x^2 +y^2 đạt giá trị nhỏ nhất
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
Tìm các giá trị của m để nghiệm của hệ phương trình x + 1 4 − y 2 = x + y + 1 x − 2 2 + y − 1 3 = x + y − 1 cũng là nghiệm của phương trình (m + 2)x + 7my = m – 225
A. m = 40
B. m = 5
C. m = 50
D. m = 60
Ta có
x + 1 4 − y 2 = x + y + 1 x − 2 2 + y − 1 3 = x + y − 1
⇔ x + 1 − 2 y = 4 x + 4 y + 4 3 x − 6 + 2 y − 2 = 6 x + 6 y − 6
⇔ 3 x + 6 y = − 3 3 x + 4 y = − 2 ⇔ y = − 1 2 x = 0
Thay x = 0; y = − 1 2 vào phương trình (m + 2)x + 7my = m – 225 ta được:
(m + 2).0 + 7m − 1 2 = m – 225 ⇔ 9 2 m = 225 ⇔ m = 50
Đáp án: C
Cho phương trình: x2 - 2 (m - 1)x - m - 3 = 0 (1)
1) Giải phương trình với m = -3
2) Tìm m để phương trình (1) có 2 nghiệm thoả mãn hệ thức \(x_1^2+x_2^2\) = 10.
3) Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc giá trị của m
1, bạn tự giải
2,
\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Vậy pt luôn có 2 nghiệm x1 ; x2 khi \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\left(luondung\right)\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
Thay vào ta được \(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6=10\Leftrightarrow4m^2-6m=0\)
\(\Leftrightarrow m\left(4m-6\right)=0\Leftrightarrow m=0;m=\dfrac{3}{2}\)
1. Tìm các giá trị của m để phương trình 3x2 - 4a + 2(m-1) = 0 có hai nghiệm phân biệt nhỏ hơn 2
2. Tìm các giá trị của m để phương trình x2 +mx -1 - 0 có ít nhất một nghiệm lớn hơn hoặc bằng 2
3. Cho phương trình mx2 - (2m-1)x +m+2 = 0 (5). Tìm hệ thức liên hệ giữa các nghiệm x1, x2 của (5) không phụ thuộc vào m
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)