Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Teresa Amy
Xem chi tiết
Nguyễn Minh Tiệp
Xem chi tiết
Tuân Xuân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 13:10

x^2+y^2-2x-4y+6=1-(x-y+1)^2

=>x^2-2x+1+y^2-4y+4=-(x-y+1)^2

=>(x-1)^2+(y-2)^2=-(x-y+1)^2

=>(x-1)^2+(y-2)^2+(x-y+1)^2=0

=>x=1;y=2

A=2022+2023*2

=2022+4046

=6068

Linh Cao Phương Linh
Xem chi tiết
ILoveMath
6 tháng 3 2022 lúc 21:11

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2018 lúc 6:25

Biến đổi: 4 x 2 − 4 xy + y 2 = 0 ⇔ ( 2 x − y ) 2 = 0 ⇔ 2 x = y  

Thay y = 2x vào P ta được P = -3

Nguyễn Thị Minh Châu
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 5 2021 lúc 12:57

\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)

\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)

\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)

nguyễn Vương Gia BẢO
Xem chi tiết
21 Thảo My - 7A14
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 9:35

\(A=\dfrac{x^2+y^2}{xy}-4xy=\dfrac{\left(x+y\right)^2-2xy}{xy}-4xy\)

\(=\dfrac{4x^2y^2-2xy}{xy}-4xy=4xy-2-4xy=-2\)

Đặng Hoài Tâm
Xem chi tiết