Chứng minh: 7^1+7^2+7^3+...+7^19+7^20\(⋮\)57
chứng minh rằng
719+720+721⋮57
Có
\(7^{19}+7^{20}+7^{21}=7^{19}.\left(1+7^2+7\right)=7^{19}.57⋮57\)
cho A = 71 +72+73+ ... +719+720+721. Hãy chứng tỏ A chia hết cho 57
Chứng minh: 7^1+7^2+7^3+...+7^117+7^118 chia hết cho 57
\(=7\left(1+7+7^2\right)+...+7^{115}\left(1+7+7^2\right)+118\)
\(=57\left(7+...+7^{115}\right)+7^{118}⋮57\)
a.Cho A=40+41+42+...+448+449.Tìm dư khi chia A cho 5
b.Cho A=71+72+73+...+719+720+721. Chứng tỏ A chia hết cho 57
a. ( 19 5/8 : 7/12 - 13 1/4 : 7/12) . 4/5
b.( - 2/5 + 3/7) - (4/9 + 12/20 - 13/35) + 7/35
c. ( 4 5/57 - 3/ 4/51 + 8 13/29) - ( 3 5/57 - 6 16/29)
\(\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right).\frac{4}{5}\)
\(=\left(\frac{157}{8}:\frac{7}{12}-\frac{53}{4}:\frac{7}{12}\right).\frac{4}{5}\)
\(=\left[\left(\frac{157}{8}-\frac{53}{4}\right):\frac{7}{12}\right].\frac{4}{5}\)
\(=\left[\frac{51}{8}:\frac{7}{12}\right].\frac{4}{5}\)
\(=\frac{153}{14}.\frac{4}{5}\)
\(=\frac{306}{35}\)
\(\left(\frac{-2}{5}+\frac{3}{7}\right)-\left(\frac{4}{9}+\frac{12}{20}-\frac{13}{35}\right)+\frac{7}{35}\)
\(=\frac{1}{35}-\frac{212}{315}+\frac{7}{35}\)
\(=\frac{1}{35}+\frac{-212}{315}+\frac{7}{35}\)
\(=\frac{9}{315}+\frac{-212}{315}+\frac{63}{315}\)
\(=\frac{-140}{315}=\frac{-4}{9}\)
\(\left(4\frac{5}{57}-3\frac{4}{51}+8\frac{13}{29}\right)-\left(3\frac{5}{57}-6\frac{16}{29}\right)\)
\(=\left(\frac{233}{57}-\frac{157}{51}+\frac{245}{29}\right)-\left(\frac{176}{57}-\frac{190}{29}\right)\)
\(=\frac{1941}{323}-\frac{-5726}{1653}\)
\(=\frac{14011}{1479}\)
chứng minh: D= 7^1+7^2+7^3+7^4+...+7^2010 chia hết cho 8 và 57
Ta có: \(D=7^1+7^2+7^3+7^4+...+7^{2010}\\ D=\left(7^1+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{2009}+7^{2010}\right)\\ D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\\ D=8\left(7+7^3+...+7^{2009}\right)⋮8\\ =>D⋮8->\left(a\right)\\ D=7^1+7^2+7^3+7^4+...+7^{2010}\\ D=\left(7^1+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{2008}+7^{2009}+7^{2010}\right)\\ D=7\left(1+7+49\right)+7^4\left(1+7+49\right)+...+7^{2008}\left(1+7+49\right)\\ D=57\left(7+7^4+...+7^{2008}\right)⋮57\\ =>D⋮57->\left(b\right)\\ Từ\left(a\right),\left(b\right)=>D⋮8;D⋮57\)
A= 7 + 7^2+7^3+...+7^90. Chứng minh A chia hết cho 57
\(A=7\left(1+7+7^2\right)+...+7^{88}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{88}\right)⋮57\)
Cho A = 7 + 7^2 + 7^3 + ... + 7^119 + 7^120. chứng minh rằng a chia hết cho 57
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
A =7(1+7+72)+74(1+7+72)+...+7118(1+7+72)A=7(1+7+72)+74(1+7+72)+...+7118(1+7+72)
=57 (7+74+...+7118)⋮57
- Chứng minh : C = 5^1 + 5^2 + 5^3 + 5^4 + ... + 5^2010 chia hết cho 6 và 31 - Chứng minh : D = 7^1 + 7^2 + 7^3 + 7^4 + ... + 7^2010 chia hết cho 8 và 57
+) C=5+52+53+54+....+52010
<=> C=(5+52)+(53+54)+.....+(52009+52010)
<=> C=5(1+5)+53(1+5)+....+52009(1+5)
<=> C=5 x 6 +53 x 6+....+52009 x 6
<=> C=6(5+53+....+52009)
=> C chia hết cho 6 (đpcm)
+) C=5+52+53+54+....+52010
<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)
<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)
<=> C=5 x 31+54x31 +....+52008 x 31
<=> C=31(5+54+....+52008)
=> C chia hết cho 31 (đpcm)
+) D=7+72+73+74+....+72010
<=> D=(7+72)+(73+74)+....+(72009+72010)
<=> D=7(1+7)+73(1+7)+....+72009(1+7)
<=> D=7 x 8 +73 x 8 +....+72009 x 8
<=> D=8(7+73+....+72009)
+) D=7+72+73+74+....+72010
<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)
<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)
<=> D=7 x 57 +74 x 57+....+72008 x 57
<=> D=57(7+74+...+72008)
=> D chia hết cho 57 (đpcm)