Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê vsbzhsjskskskssm
Xem chi tiết
anhduc1501
Xem chi tiết
Nguyễn Thị Anh
19 tháng 6 2016 lúc 23:34

/hoi-dap/question/31869.html

bạn tham khảo coi

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 21:40

\(\dfrac{V_{SABH}}{V_{SABC}}=\dfrac{SH}{SC}=\left(\dfrac{SA}{SC}\right)^2\Rightarrow V_{SABN}=\left(\dfrac{SA}{SC}\right)^2.V_{SABC}\)

\(AC^2=AB^2+BC^2=2AB^2=2a^2\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+2a^2}=a\sqrt{3}\)

\(\Rightarrow V_{SABH}=\left(\dfrac{a}{a\sqrt{3}}\right)^2.\dfrac{1}{3}.SA.AB^2=\dfrac{a^3}{9}\)

Linh Châu
Xem chi tiết
Duy Hùng
Xem chi tiết
Akai Haruma
1 tháng 2 2017 lúc 12:47

Lời giải:

Gọi $H$ là chân đường cao kẻ từ $S$ xuống mặt phẳng $(ABC)$

Ta có \(\left\{\begin{matrix} SH\perp AB\\ SA\perp AB\end{matrix}\right.\Rightarrow AB\perp (SHA)\rightarrow AB\perp HA\)

Tương tự \(BC\perp HC\). Kết hợp với \(ABC\) vuông cân tại $B$ suy ra \(ABCH\) là hình vuông

\(AH\parallel (SBC)\Rightarrow d(A,(SBC))=d(H,(SBC))\)

Kẻ \(HT\perp SC\). Có \(\left\{\begin{matrix} SH\perp BC\\ HC\perp BC\end{matrix}\right.\Rightarrow BC\perp (SHC)\Rightarrow BC\perp HT\)

Do đó \(HT\perp (SBC)\Rightarrow d(H,(SBC))=HT=\sqrt{\frac{SH^2.HC^2}{SH^2+HC^2}}=\sqrt{\frac{SH^2.AB^2}{SH^2+AB^2}}=\sqrt{2}\Rightarrow SH=\sqrt{6}a\)

Từ trung điểm $O$ của $AC$ dựng trục vuông góc với mặt phẳng $(ABC)$. Trên trục đó ta lấy điểm $I$ là tâm mặt cầu ngoại tiếp.

\(IS^2=IA^2=IH^2\Leftrightarrow (\overrightarrow{IO}+\overrightarrow{OH}+\overrightarrow{HS})^2=IO^2+OH^2\)

\(\Leftrightarrow HS^2+2\overrightarrow{IO}.\overrightarrow{HS}=0\)

Do \(\overrightarrow {SH}\parallel \overrightarrow {IO}\Rightarrow \overrightarrow {IO}=k\overrightarrow{SH}\). Thay vào PT trên có $k=\frac{1}{2}$

\(\Rightarrow IO=\frac{\sqrt{6}a}{2}\Rightarrow IA=\sqrt{IO^2+AO^2}=\sqrt{3}a\)

\(\Rightarrow S_{\text{mặt cầu}}=4\pi R^2=12a^2\pi\)

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 15:38

\(BC=AB\sqrt{2}=a\sqrt{2}\)

\(SB=\sqrt{SC^2+BC^2}=a\sqrt{3}\) ; \(SA=\sqrt{SC^2+AC^2}=a\sqrt{2}\)

\(V_{SBAC}=\dfrac{1}{3}SC.\dfrac{1}{2}AB^2=\dfrac{a^3}{6}\)

\(\dfrac{V_{SCEF}}{V_{SABC}}=\dfrac{SF}{SB}.\dfrac{SE}{SA}=\left(\dfrac{SC}{SB}\right)^2\left(\dfrac{SC}{SA}\right)^2=\left(\dfrac{a}{a\sqrt{3}}\right)^2.\left(\dfrac{a}{a\sqrt{2}}\right)^2=\dfrac{1}{6}\)

\(\Rightarrow V_{SCEF}=\dfrac{1}{6}.\dfrac{a^3}{6}=\dfrac{a^3}{36}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 3:48

Đáp án A

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2019 lúc 3:54

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2019 lúc 9:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 3 2019 lúc 3:34

Chọn đáp án A