Cho cấp số nhân u n với u 1 = 1 , công bội q = 2 và cấp số cộng v n có v 1 = 2 công sai d = 2. Hỏi có tất cả bao nhiêu số có mặt đồng thời trong 1000 số hạng đầu tiên của cả hai cấp số cộng nói trên?
A. 9
B. 10
C. 11
D. 12
cho cấp số cộng (u\(_n\)) có công sai d khác 0 và cấp số nhân (v\(_n\)) có công bội q là số dương thỏa mãn \(u_1=v_1=-2\); \(u_2=v_2\); \(u_3=v_3+8\). tính tổng d+q
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
Cho cấp số nhân ( u n ) có u n = 2 ( - 3 ) n + 1 . Tìm công bội q của cấp số nhân đó
A. q = 6 ( 3 + 1 )
B. q = - 6 ( 3 + 1 )
C. q = 3
D. q = - 3
Cho u n là cấp số cộng có công sai là d, v n là cấp số nhân có công bội là q và các khẳng định
I ) u n = d + u n − 1 ∀ n ≥ 2, n ∈ N
I I ) v n = q n v 1 ∀ n ≥ 2, n ∈ N
I I I ) u n = u n − 1 + u n + 1 2 ∀ n ≥ 2, n ∈ N
I V ) v n − 1 v n = v n − 1 2 ∀ ≥ 2, n ∈ N
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
A. 4
B. 2
C. 3
D. 5
Đáp án B
Phương pháp: Dựa vào định nghĩa và các tính chất của các số cộng và cấp số nhân.
Cho cấp số nhân u n có tổng n số hạng đầu tiên là S n = 5 n − 1 , n = 1 , 2 , 3 ... Tìm số hạng đầu u 1 và công bội q của cấp số nhân đó.
A. u 1 = 5 , q = 6
B. u 1 = 4 , q = 5
C. u 1 = 5 , q = 4
D. u 1 = 6 , q = 5
Bài toán yêu cầu bạn tính tổng của một cấp số nhân có công bội là 3 và số hạng đầu tiên là 3. Công thức tính tổng của một cấp số nhân là:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
Trong đó, $a_1$ là số hạng đầu tiên, $q$ là công bội, và $n$ là số hạng. Áp dụng công thức này vào bài toán của bạn, ta có:
$$A = 3^1 + 3^2 + 3^3 + ....... + 3^50 = \frac{3(1-3^{50})}{1-3}$$
Để tính giá trị của A, bạn có thể sử dụng máy tính hoặc các trang web chuyên về toán học. Mình đã tìm thấy một trang web có thể giải quyết bài toán này cho bạn. Theo trang web đó, kết quả của A là:
$$A \approx 7.178979876e23$$
Đây là một số rất lớn, gần bằng 718 nghìn tỷ tỷ tỷ. Hy vọng bạn đã hiểu cách giải bài toán này. Nếu bạn có thắc mắc gì khác, xin vui lòng liên hệ với mình. Mình rất vui khi được giúp đỡ bạn
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_2=2\), \(u_6=32\) công bội của cấp số nhân đó là
2) cho cấp số nhân \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công bội q = 3. Gía trị \(u_{2019}\) bằng
1. Gọi công bội của csn đó là $q$ thì:
$u_6=q^4u_2$
$\Leftrightarrow 32=q^4.2\Leftrightarrow q^4=16$
$\Leftrightarrow q=\pm 2$
2.
$u_{2019}=q^{2018}u_1=2.3^{2018}$
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
cho cấp số cộng Un vs U1 =3 và U3=12 công bội q của cấp số nhân cho bằng
Số hạng thứ hai, số hạng đầu và số hạng thứ ba của một cấp số cộng với công sai khác 0 theo thứ tự đó lập thành một cấp số nhân với công bội q. Tìm q ?
A. q= 2
B. q = -2
C. q = − 3 2 .
D. q = 3 2 .
Chọn B
Giả sử ba số hạng a, b, c lập thành cấp số cộng thỏa yêu cầu, khi đó b, a, c theo thứ tự đó lập thành cấp số nhân công bội q. Ta có
a + c = 2 b a = b q ; c = b q 2 ⇒ b q + b q 2 = 2 b ⇔ b = 0 q 2 + q − 2 = 0 .
Nếu b = 0 ⇒ a = b = c = 0 nên a, b, c là cấp số cộng công sai d= 0 (vô lí).
Nếu q 2 + q − 2 = 0 ⇔ q = 1 hoặc q= -2. Nếu q = 1 ⇒ a = b = c (vô lí), do đó q = -2.