Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Duyên
Xem chi tiết
Nguyệt Minh
Xem chi tiết
Trần Ái Linh
27 tháng 5 2021 lúc 12:52

`A=sin(π-α)+cos(π+α)+cos(-α)`

`= sinα-cosα+cosα=sinα=3/5`

Trần Thị Ngọc Duyên
Xem chi tiết
pikachu(^_^)
Xem chi tiết
Aline Ma
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 12 2023 lúc 20:21

\(A=cos\left(\alpha+\dfrac{\pi}{6}\right)cos\left(\alpha-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\left[cos\left(\alpha+\dfrac{\pi}{6}+\alpha-\dfrac{\pi}{6}\right)+cos\left(\alpha+\dfrac{\pi}{6}-\alpha+\dfrac{\pi}{6}\right)\right]\)

\(=\dfrac{1}{2}\left(cos2\alpha+cos\dfrac{\pi}{3}\right)=\dfrac{1}{2}\left(\dfrac{1}{4}+\dfrac{1}{2}\right)=\dfrac{3}{8}\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 0:02

a: pi/2<a<pi

=>sin a>0

\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)

b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

c: \(sin\left(a-\dfrac{pi}{3}\right)\)

\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)

d: \(cos\left(a-\dfrac{pi}{6}\right)\)

\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)

Phạm Thị Thu Uyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 6 2017 lúc 7:20

Đáp án đúng : D

Herimone
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 20:43

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)

\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)

\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)