Phương trình z 1 = 1 + 2 i , z 2 = 2 - 3 i có nghiệm là z = 2 + i khi
A. a = 1, b = 4
B. a = -1, b = 4
C. a = -1, b = -4
D. a = 1, b = -4
Gọi z1 z2 là hai nghiệm phức của phương trình \(z^2-4z+5=0\) . Tính:
w = \(\dfrac{1}{z_1}+\dfrac{1}{z_2}+i\left(z_1^2z_2+z^2_2z_1\right)\)
\(z^2-4z+5=0\Rightarrow\left\{{}\begin{matrix}z_1+z_2=4\\z_1z_2=5\end{matrix}\right.\) theo hệ thức Viet
\(w=\dfrac{z_1+z_2}{z_1z_2}+i.z_1z_2\left(z_1+z_2\right)=\dfrac{4}{5}+i.5.4=\dfrac{4}{5}+20i\)
1) Tìm nghiệm nguyên của phương trình \(x^3-y^3-2y^2-3y-1=0\)
2) Tìm bộ nguyên dương (x,y,z) thỏa mãn phương trình
\(\left(x+y\right)^2+3x+y+1=z^2\)
Bài 2:
Với $x,y,z$ nguyên dương ta thấy:
\((x+y)^2+3x+y+1> (x+y)^2(1)\)
Và:
\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)
hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$
Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)
\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)
Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$
$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$
$\Leftrightarrow x=y$
Thay vào PT ban đầu:
\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)
Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.
Lời giải:
Xét
PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Ta thấy:
\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)
\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)
\(>(y-1)^3(2)\)
Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)
\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)
Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)
Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)
\(\Leftrightarrow y=0\)
\(\Rightarrow x^3=1\Rightarrow x=1\)
Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)
\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)
$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$
Vậy $(x,y)=(1,0); (-1,-1)$
Cho các mệnh đề sau:
1) d : 2 x + y - z - 3 = 0 x + y + z - 1 = 0 phương trình tham số có dạng: x = 2 t y = 2 - 3 t z = t - 1
2) d : x + y - 1 = 0 4 y + z + 1 = 0 có phương trình chính tắc là d : x - 1 1 = y z = z + 1 4
3) Phương trình chính tắc của đường thẳng (d) đi qua điểm A(2,0,-3) và vuông góc với mặt phẳng P : 2 x - 3 y + 5 z - 4 = 0 là d : x - 2 2 = y - 3 = z + 3 5
Hỏi bao nhiêu mệnh đề đúng.
A.1
B. 3
C. 2
D. 0
Giải phương trình: \(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\frac{1}{2}(x+y+z)\)
Phương trình \(z^2+az+b=0\) với a b là các số thực nhận số phức 1+i là một nghiệm.Tính a - b?
A:-2
B:-4
C:4
D:0
Nếu \(z_1=a+bi\) là nghiệm thì \(z_2=a-bi\) cũng là nghiệm, do đó \(1-i\) cũng là nghiệm
\(\Rightarrow\left\{{}\begin{matrix}-a=z_1+z_2=2\\b=z_1z_2=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
\(\Rightarrow a-b=-4\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2=y+1\\y^2=z+1\\z^2=x+1\end{cases}}\)
P/s: Anh/chị nào học giỏi thì giúp em với ạ
Do x^2,y^2,z^2≥0 nên x+1≥0;y+1≥0;z+1≥0⇒x,y,z≥−1
★ Nếu x≥0 thì z^2=x+1≥1⇒z>0⇒y^2=z+1>1⇒y>0
Không mất tính tổng quát giả sử x≥y≥z>0⇒x^2≥y^2≥z^2>0⇒y≥z≥x⇒x=y=z và x^2=x+1⇒x=y=z=(1+√5)/2
★ Nếu −1≤x≤0 thì y+1=x^2<1⇒y≤0⇒z+1=y2<1⇒z<0
Không mất tính tổng quát giả sử −1≤x≤y≤z≤0⇒x2≥y2≥z2>0⇒y≥z≥x suy ra x=y=z=(1−√5)/2
Vậy hệ có 2 nghiệm x=y=z=(1±√5)/2
Em còn cách khác. Anh xem có đúng ko?
Điều kiện: \(x,y,z\ge-1\)
Xét các trường hợp, dùng phương pháp đánh giá, CM được:
\(x=y=z\)
Thế vào tìm được nghiệm:
\(x=y=z=\frac{1\pm\sqrt{5}}{x}\)
Câu 1 :Chứng minh phương trình 11x^2+5=y^2 có vô số nghiệm nguyên có dạng y=11z-4; z thuộc Z
Câu 2 : Chưng minh phương trình: 7x^2+2= y^2 có vô số nghiệm nguyên.
Câu 3 : Tìm các số nguyên thoả mãn: 8x^2y^2 +x^2+y^2=10xy
MÌNH ĐANG CẦN GẤP GIẢI GIÚP MÌNH NHA !
Giải hệ phương trình:
a)\(\hept{\begin{cases}x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}\\x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{771}{16}\end{cases}}\)
b)\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
a) ĐK: x, y, z khác 0
\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)
\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)
Ta có hệ >:
\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)
Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c
"=" xảy ra khi và chỉ khi a=b=c
Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\) giải ra tìm x, y, z
b) Hệ đối xứng:
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
Đặt x+y=S, xy=P
Ta có hệ :
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)
=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)
Tự giải tìm S, P
=> x,y
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{x+z}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\)