Chọn D
Thay z = 2 + i vào phương trình đã cho ta có:
Chọn D
Thay z = 2 + i vào phương trình đã cho ta có:
Cho phương trình \(z^2+bc+c=0\) có hai nghiệm z1 z2 thỏa mãn z2 - z1 = 4+2i . Gọi A,B là các điểm biểu diễn các nghiệm của phương trình \(z^2-2bz+4c=0\) . Tính độ dài đoạn AB
A: \(8\sqrt{5}\)
B: \(2\sqrt{5}\)
C: \(4\sqrt{5}\)
D: \(\sqrt{5}\)
Phương trình z 2 - a z + b = 0 (a, b ∈ R) có nghiệm z = 1 + i khi
A. a = 2, b = -2
B. a = 2, b = 2
C. a = -2, b = 2
D. a = -2, b = -2
Phương trình \(z^2+az+b=0\) với a b là các số thực nhận số phức 1+i là một nghiệm.Tính a - b?
A:-2
B:-4
C:4
D:0
Xét các số phức z = a + b i , ( a , b ∈ R ) thỏa mãn 4 ( z - z ¯ ) - 15 i = i ( z + z ¯ - 1 ) 2 . Tính F = - a + 4 b khi z - 1 2 + 3 i đạt giá trị nhỏ nhất
Phương trình z 2 + a z + b = 0 nhận z = 1 - 2i làm nghiệm. Khi đó a + b bằng
A. 3
B. 4
C. 5
D. 6
Gọi z1 z2 là hai nghiệm phức của phương trình \(z^2-4z+5=0\) . Tính:
w = \(\dfrac{1}{z_1}+\dfrac{1}{z_2}+i\left(z_1^2z_2+z^2_2z_1\right)\)
Tìm môđun của số phức z=a+bi a , b ∈ R thỏa mãn ( z - 4 ) = ( 1 - i ) z - ( 4 + 3 z ) i
Xét các số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn điều kiện |z - 4 - 3i| = 5 . Tính P = a + b khi giá trị biểu thức |z + 1 - 3i + |z - 1 + i|| đạt giá trị lớn nhất.
A. P = 10
B. P = 4
D. P = 6
D. P = 8
Xét các số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn điều kiện |z - 4 - 3i| = 5 . Tính P = a + b khi giá trị biểu thức |z + 1 - 3i| + |z - 1 + i| đạt giá trị lớn nhất.
A. P = 10
B. P = 4
C. P = 6
D. P = 8