Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh lê
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 11 2021 lúc 14:32

TH1: chữ số hàng đơn vị bằng 0

Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách

4 chữ số này tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách

\(\Rightarrow A_8^4.C_5^3\) số

TH2: chữ số hàng đơn vị khác 0: có 4 cách chọn

- Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách

Xếp 3 chữ số 1 vào 5 khe trống: \(C_5^3\) cách

- Chọn 4 chữ số từ 8 chữ số còn lại sao cho có xuất hiện số 0, cố định số 0 đứng đầu và hoán vị 3 chữ số còn lại: \(A_7^3\) cách

3 chữ số tạo ra 4 khe trống, xếp 3 chữ số 1 vào 4 khe trống: \(C_4^3\) cách

\(\Rightarrow4\left(A_8^4.C_5^3-A_7^3.C_4^3\right)\) số

Tổng cộng: \(A_8^4.C_5^3+4\left(A_8^4.C_5^3-A_7^3.C_5^3\right)\) số

Nhiên Nguyễn Thị Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2023 lúc 20:22

Gọi số cần tìm là \(\overline{abcdefgh}\)

TH1: h=0

Bỏ 2 ô mà có thể số 1 đứng cạnh nhau ta được 5 ô còn lại có trống để cho số 1 vào

=>Có \(C^3_5\left(cach\right)\)

Số cách chọn cho 4 ô trống còn lại là: \(A^4_8\left(cách\right)\)

=>Có \(C^3_5\cdot A^4_8\left(cách\right)\)

TH2: h<>0

=>h có 4 cách

Số cách chọn cho vị trí số 1 là \(C^3_5\left(cách\right)\)

=>SỐ cách chọn cho các vị trí còn lại là: \(A^4_8\left(cách\right)\)

Nếu số 0 đứng đầu thì trừ đi số ô nhét số 1 vào thì còn 4 ô và có \(C^3_4\) cách nhét số1

=>Số cách chọn cho 3 vị trí còn lại là \(A^3_7\left(cách\right)\)

=>Trường hợp này có \(4\cdot\left(A^4_8\cdot C^3_5-A^3_7\cdot C^3_4\right)\left(cách\right)\)

=>Có tất cả 80640 cách

Nguyễn Linh Chi
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 23:05

Chữ số hàng đơn vị có 5 cách chọn

Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại

Số số thỏa mãn: \(5.A_8^2=...\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2017 lúc 9:01

Đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2018 lúc 3:33

NGUYỄN MINH HUY
Xem chi tiết
Pham Tien Dat
20 tháng 3 2021 lúc 21:08

Số chữ số tìm được là \(\dfrac{C^2_5\cdot5!}{3!}=200\)

Số số chia hết cho 3 là \(\dfrac{2\cdot5!}{3!}=40\)

\(\Rightarrow P=\dfrac{40}{200}=\dfrac{1}{5}\)

 

Nguyễn Minh Huy
Xem chi tiết
Ngọc Như Vũ Phan
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 23:52

Chọn 5 chữ số từ 9 chữ số còn lại và hoán vị chúng: \(A_9^5\) cách

5 chữ số đã cho tạo thành 6 khe trống, xếp 3 chữ số 1 vào 6 khe trống đó: \(C_6^3\) cách

\(\Rightarrow A_9^5.C_6^3\) số (bao gồm cả trường hợp số 0 đứng đầu)

Chọn 5 chữ số, trong đó có mặt chữ số 0: \(C_8^4\) cách

Xếp 5 chữ số sao cho số 0 đứng đầu: \(4!\) cách

5 chữ số (trong đó vị trí 0 đứng đầu cố định) tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách

\(\Rightarrow\) Tổng cộng có: \(A_9^5.C_6^3-C_8^4.4!.C_5^3\) số thỏa mãn