Có bao nhiêu số tự nhiên chắn có 11 chữ số trong đó chữ số 9 có mặt đúng 4 lần , các chữ số còn lại có mặt không quá 1 lần đồng thời không có 2 chữ số 9 nào đứng cạnh nhau ?
Có bao nhiêu số tự nhiên chẵn có 8 chữ số trong đó chữ số 1 có mặt đúng 3 lần, các chữ số
còn lại có mặt không quá một lần đồng thời không có hai chữ số 1 nào đứng cạnh nhau?
TH1: chữ số hàng đơn vị bằng 0
Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách
4 chữ số này tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách
\(\Rightarrow A_8^4.C_5^3\) số
TH2: chữ số hàng đơn vị khác 0: có 4 cách chọn
- Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách
Xếp 3 chữ số 1 vào 5 khe trống: \(C_5^3\) cách
- Chọn 4 chữ số từ 8 chữ số còn lại sao cho có xuất hiện số 0, cố định số 0 đứng đầu và hoán vị 3 chữ số còn lại: \(A_7^3\) cách
3 chữ số tạo ra 4 khe trống, xếp 3 chữ số 1 vào 4 khe trống: \(C_4^3\) cách
\(\Rightarrow4\left(A_8^4.C_5^3-A_7^3.C_4^3\right)\) số
Tổng cộng: \(A_8^4.C_5^3+4\left(A_8^4.C_5^3-A_7^3.C_5^3\right)\) số
cho tập hợp X gồm 0,1,2,3,4,5. Có bao nhiêu số tự nhiên chẵn có 8 chữ số trong đó chữ số 1 có mặt đúng 3 lần kề nhau. các chữ số còn lại có mặt không quá một lần
Gọi số cần tìm là \(\overline{abcdefgh}\)
TH1: h=0
Bỏ 2 ô mà có thể số 1 đứng cạnh nhau ta được 5 ô còn lại có trống để cho số 1 vào
=>Có \(C^3_5\left(cach\right)\)
Số cách chọn cho 4 ô trống còn lại là: \(A^4_8\left(cách\right)\)
=>Có \(C^3_5\cdot A^4_8\left(cách\right)\)
TH2: h<>0
=>h có 4 cách
Số cách chọn cho vị trí số 1 là \(C^3_5\left(cách\right)\)
=>SỐ cách chọn cho các vị trí còn lại là: \(A^4_8\left(cách\right)\)
Nếu số 0 đứng đầu thì trừ đi số ô nhét số 1 vào thì còn 4 ô và có \(C^3_4\) cách nhét số1
=>Số cách chọn cho 3 vị trí còn lại là \(A^3_7\left(cách\right)\)
=>Trường hợp này có \(4\cdot\left(A^4_8\cdot C^3_5-A^3_7\cdot C^3_4\right)\left(cách\right)\)
=>Có tất cả 80640 cách
Từ các chữ số 0;1;2;3;4;5;6;7;8;9 . Có thể lập bao nhiêu số tự nhiên có 5 chữ số
a, Trong đó chữ số 5 có mặt 2 lần, các chữ số còn lại có mặt không quá một lần.
b. Chữ số đứng sau lớn hơn chữ số đứng trước
c. Khác nhau luôn có mặt chữ số 1,2 và chúng không đứng cạnh nhau
Từ các chữ số 0;1;2;3;4;5;6;7;8;9 lập được bao nhiêu số tự nhiên lẻ, có 6 chữ số;trong đó chữ số 2 xuất hiện 3 lần,các chữ số còn lại xuất hiện không quá 1 lần và không có 2 chữ số 2 nào đứng cạnh nhau
Chữ số hàng đơn vị có 5 cách chọn
Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại
Số số thỏa mãn: \(5.A_8^2=...\)
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2,3, 4 trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S . Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau
A.0,2.
B. 1 3
C. 1 6
D.0,3.
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2,3, 4 trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S . Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau.
A. 0,2
B. 1/3
C. 1/6
D. 0,3
từ các chứ số 1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó chữ số 3 có mặt đúng 3 lần, các chữ số còn lại có mặt không quá 1 lần. Trong các số tự nhiên nói trêntìm xác suất để số được chọn chia hết cho 3
Số chữ số tìm được là \(\dfrac{C^2_5\cdot5!}{3!}=200\)
Số số chia hết cho 3 là \(\dfrac{2\cdot5!}{3!}=40\)
\(\Rightarrow P=\dfrac{40}{200}=\dfrac{1}{5}\)
từ các chứ số 1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó chữ số 3 có mặt đúng 3 lần, các chữ số còn lại có mặt không quá 1 lần. Trong các số tự nhiên nói trêntìm xác suất để số được chọn chia hết cho 3
Với các chữ số 0,1,2,3,4,5,6,7,8,9 có thể lập được bao nhiêu số chẵn gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt không quá 1 lần và 2 số 1 không được đứng cạnh nhau
Chọn 5 chữ số từ 9 chữ số còn lại và hoán vị chúng: \(A_9^5\) cách
5 chữ số đã cho tạo thành 6 khe trống, xếp 3 chữ số 1 vào 6 khe trống đó: \(C_6^3\) cách
\(\Rightarrow A_9^5.C_6^3\) số (bao gồm cả trường hợp số 0 đứng đầu)
Chọn 5 chữ số, trong đó có mặt chữ số 0: \(C_8^4\) cách
Xếp 5 chữ số sao cho số 0 đứng đầu: \(4!\) cách
5 chữ số (trong đó vị trí 0 đứng đầu cố định) tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách
\(\Rightarrow\) Tổng cộng có: \(A_9^5.C_6^3-C_8^4.4!.C_5^3\) số thỏa mãn