Gọi số cần tìm là \(\overline{abcdefgh}\)
TH1: h=0
Bỏ 2 ô mà có thể số 1 đứng cạnh nhau ta được 5 ô còn lại có trống để cho số 1 vào
=>Có \(C^3_5\left(cach\right)\)
Số cách chọn cho 4 ô trống còn lại là: \(A^4_8\left(cách\right)\)
=>Có \(C^3_5\cdot A^4_8\left(cách\right)\)
TH2: h<>0
=>h có 4 cách
Số cách chọn cho vị trí số 1 là \(C^3_5\left(cách\right)\)
=>SỐ cách chọn cho các vị trí còn lại là: \(A^4_8\left(cách\right)\)
Nếu số 0 đứng đầu thì trừ đi số ô nhét số 1 vào thì còn 4 ô và có \(C^3_4\) cách nhét số1
=>Số cách chọn cho 3 vị trí còn lại là \(A^3_7\left(cách\right)\)
=>Trường hợp này có \(4\cdot\left(A^4_8\cdot C^3_5-A^3_7\cdot C^3_4\right)\left(cách\right)\)
=>Có tất cả 80640 cách