Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Núi non tình yêu thuần k...
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Nguyen Phu Tho
Xem chi tiết
Nguyễn Thế Vinh
25 tháng 3 2021 lúc 22:17

mik ko bt

Khách vãng lai đã xóa
Phạm Đình Việt Hùng
22 tháng 7 2021 lúc 21:23
trung bình cộng của các số 545,328,624,295 là bao nhiêu
Khách vãng lai đã xóa
Đỗ Minh Châu
25 tháng 7 2021 lúc 15:44

mình ko bt

Khách vãng lai đã xóa
Hồ Thu Phương
Xem chi tiết
Nguyễn Huy Tú
9 tháng 1 2021 lúc 16:01

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

Khách vãng lai đã xóa
Phan Nghĩa
16 tháng 5 2021 lúc 20:32

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

Khách vãng lai đã xóa
Phan Nghĩa
17 tháng 5 2021 lúc 20:01

\(\frac{\left(x-2\right).3}{2}+3+\frac{\left(x-3\right).5}{3}+5+\frac{\left(x-5\right).2}{5}+2=10\)

\(< =>\frac{\left(x-2\right).3.15}{30}+\frac{\left(x-3\right).5.10}{30}+\frac{\left(x-5\right).2.6}{30}=10-2-3-5\)

\(< =>\frac{\left(x-2\right).45+\left(x-3\right).50+\left(x-5\right).12}{30}=0\)

\(< =>45x-90+50x-150+12x-60=0\)

\(< =>107x-300=0< =>x=\frac{300}{107}\)

Khách vãng lai đã xóa
phan thị minh anh
Xem chi tiết
Nguyễn Ngọc Như Quỳnh
Xem chi tiết
Vongola Famiglia
14 tháng 1 2016 lúc 20:27

a)x=-17

b)x=9/10

c)x=4\(\frac{1}{3}\)

tick đi giải chi tiết cho

Vongola Famiglia
14 tháng 1 2016 lúc 20:40

a)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

7x+35/3=2x+6/1=>(7x+35)1=3(2x+6)

=>x=-17

b)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

17x+19/20=27x+10/20=>(17x+19)20=20(27x+10)

c)<=>(x-2)^3+(x-4)^3+(x-7)^3+(-3)(x-2)(x-4)(x-7)=19(3x-13)

=>19(3x-13)=0

rút gọn 57x=247

=>19.3x=19.13

=>3x=13

=>x=13/3

=>x=4\(\frac{1}{3}\)

 

 

 

Chu Kim Oanh
14 tháng 1 2016 lúc 20:41

b)  

         \(\frac{x+1}{4}-\frac{2x-1}{5}+\frac{2x+1}{2}=\frac{27x+10}{20}\) 

<=>   \(\frac{5\left(x+1\right)}{20}-\frac{4\left(2x-1\right)}{20}+\frac{10\left(2x+1\right)}{20}=\frac{27x+10}{20}\)

<=>  \(5\left(x+1\right)-4\left(2x-1\right)+10\left(2x+1\right)=27x+10\)

<=>   \(5x+5-8x+4+20x+10=27x+10\)(Bước này có thể bỏ)

<=>   \(10x=-9\)

<=>  \(x=-\frac{9}{10}\)

Vậy tập nghiệm của phương trình: S=\(\left(-\frac{9}{10}\right)\) ( thay ngoặc tròn thành ngoặc nhọn )

P/s: Tớ chỉ biết làm như thế thôi!! :))) 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

Biện Văn Hùng
Xem chi tiết
Nguyễn Bùi Đại Hiệp
17 tháng 1 2016 lúc 17:05

khó hiểu vậy 

tick nhé

Biện Văn Hùng
17 tháng 1 2016 lúc 17:08

k biết mà đòi tick

 

Minh Nguyệt Điêu
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2023 lúc 22:16

c: =>2x+4>=2x+2-3

=>4>=-1(luôn đúng)

a: 5x+10>3x+3

=>2x>-7

=>x>-7/2

乇尺尺のレ
12 tháng 4 2023 lúc 22:17

bạn coi lại đề nhé!

Nguyễn Lê Phước Thịnh
12 tháng 4 2023 lúc 22:34

a: =>x+2<=0

=>x<=-2

b: =>-x>-1

=>x<1

c: =>2x+4>=2x+2-3

=>4>=-1(luôn đúng)

d: =>2x+2<5x-10-3x

=>2x+2<2x-10

=>2<-10(loại)