Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ánh tuyết nguyễn
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2022 lúc 23:11

Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)

\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)

\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 16:52

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

ánh tuyết nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:00

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 15:26

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Rell
Xem chi tiết
nguyễn thị hương giang
27 tháng 9 2021 lúc 21:37

Pt \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(-cot\left(\dfrac{\pi}{2}-3x\right)\)

     \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)=\(tan\left(\pi-3x\right)\)

     \(\Leftrightarrow\)\(x+\dfrac{\pi}{3}=\pi-3x+k\pi\)

     \(\Leftrightarrow\)4\(x\)=\(\dfrac{4}{3}\pi+k\pi\)

     \(\Leftrightarrow\) \(x=\) \(\dfrac{\pi}{3}+k\dfrac{\pi}{4}\)(\(k\in Z\))

Hồng Phúc
28 tháng 9 2021 lúc 6:07

\(pt\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=-cot\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=cot\left(-\dfrac{\pi}{2}+3x\right)\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\pi-3x\right)\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=\pi-3x+k\pi\)

\(\Leftrightarrow4x=\dfrac{2\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{4}\)

Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2018 lúc 18:02

Điều kiện:

Giải bài 6 trang 37 sgk Đại số 11 | Để học tốt Toán 11

⇔ tan x.(1 - tanx) + tanx + 1 = 1 – tan x.

⇔ tan x - tan2x + 2.tan x = 0

⇔ tan2x - 3tanx = 0

⇔ tanx(tanx - 3) = 0

Giải bài 6 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 6 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình đã cho có tập nghiệm là:

{arctan 3+kπ; k ∈ Z }

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)