Cho 3y - x = 6. Tính giá trị của biểu thức P = x y − 2 + 2x − 3y x − 6 .
A. 3
B. 4
C. 1
D. 2
Cho 3y-x=6. Tính giá trị của biểu thức: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}\)
Bài này quá dễ:vv
Ta có 3y-x=6
=> \(\left\{{}\begin{matrix}3y=6+x\\x=3y-6\end{matrix}\right.\)
Thay vào A ta có: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}=\dfrac{3y-6}{y-2}+\dfrac{2x-6-x}{x-6}=\dfrac{3\left(y-2\right)}{y-2}+\dfrac{x-6}{x-6}=3+1=4\)Vậy khi 3y-x=6 thì A=4
Cho 3y-x = 6. Tính giá trị của biểu thức:
A=( x/y-2) +(2x-3y/ x-6)
\(3y-x=6\) => \(x=3y-6\)
Thay \(x=3y-6\) vào biểu thức A. Ta có:
\(A=\left(\frac{3y-6}{y-2}\right)+\left(\frac{2\left(3y-6\right)-3y}{3y-6-6}\right)=\left(\frac{3\left(y-2\right)}{y-2}\right)+\left(\frac{6y-12-3y}{3y-12}\right)\)
\(A=\left(\frac{3\left(y-2\right)}{y-2}\right)+\left(\frac{3y-12}{3y-12}\right)=3+1=4\)
bn \(2x-\frac{3y}{x}-6\)
hay là \(\frac{2x-3y}{x-6}\)
Cho x^3+y^3=1. Tính giá trị của biểu thức P=2x^6+3x^3y^3+y^3+y^6.?
2x6 + 3x3y3 + y3 + y6
= (2x6 + 2x3y3) + (x3y3 + y3 + y6)
= 2x3(x3 + y3) + y3(x3 + y3 + 1) Vì x3 + y3 = 1
= 2x3 . 1 + y3 . 2
= 2(x3 + y3)
= 2
Cho 3y - x = 6. Tính giá trị của biểu thức A = x y - 2 + 2 x - 3 y x - 6
Cho 3y-x=6 Giá trị của biểu thức \(A=\frac{x}{y-2}+\frac{2x-3y}{x-6}\) bằng ?
cho x,y thảo mãn x^2 + 3y^2 = 4xy. Tính giá trị của biểu thức A= \(\frac{2x+3y}{x-2y}\)
Ta có : \(x^2+3y^2=4xy\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)
Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)
Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)
Ta có:
\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)
TH1: x=3y
\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)
TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)
cảm ơn 2 bạn rất nhiều, mình rất muôn bình chọn cho cả 2 nhưng rất tiếc chỉ được 1 bạn. thực ra mình định bình chọn cho bạn làm đầu tiên nhưng mình lại lỡ ấn mất rồi. cho mình xin lỗi nha
Tính giá trị các biểu thức sau:
a) Cho x-y=5.Tính GTBT P=x(x+3)+y(y-3)-2xy+90
b)Cho 2x+3y=-7.Tính GTBT P=(2x-3y)^2-12x(1-2y)-18y+118
a) P = \(x^2+3x+y^2-3y-2xy+90\)
= \(\left(x-y\right)^2+3\left(x-y\right)+90\)
= \(5^2+3.5+90=130\)
b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)
= \(4x^2+9y^2+12xy-12x-18y+118\)
= \(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)
= \(\left(-7\right)^2-6.\left(-7\right)+118=209\)
Các bạn ơi cho tui hỏi câu này : noise in / kept / night / the / awake / city / at / the / him / .
Giúp mình với , cảm ơn.
a) \(P=x\left(x+3\right)+y\left(y-3\right)-2xy+90\\ P=x^2+3x+y^2-3y-2xy+90\\ P=\left(x^2+y^2-2xy\right)+\left(3x-3y\right)+90\\ P=\left(x-y\right)^2+3\left(x-y\right)+90\\ P=5^2+3.5+90\\ P=130\)
b) \(P=\left(2x-3y\right)^2-12x\left(1-2y\right)-18y+118\\ P=4x^2-12xy+9y^2-12x+24xy-18y+118\\ P=\left(4x^2+12xy+9y^2\right)-6\left(2x+3y\right)+118\\ P=\left(2x+3y\right)^2-6\left(2x+3y\right)+118\\ P=\left(-7\right)^2-6.\left(-7\right)+118\\ P=49+42+118=209\)
Tính giá trị của biểu thức P=x^3-y^2+x+x^2*y-2x^2+2021+3y-xy với x+y=2
P = x3 - y2 + x + x2y - 2x2 + 3y - xy + 2021
= x3 - y2 + x + x2y - (x + y)x2 + 3y - xy + 2021 (do x + y = 2)
= x3 - y2 + x + x2y - x3 - x2y + 3y - xy + 2021
= -y2 + x + 3y - xy + 2021
= -y2 + 2y - xy + (x + y) + 2021
= -y2 + (x + y).y - xy + 2 + 2021 (Do x + y = 2)
= -y2 + xy + y2 - xy + 2023
= 2023
Vậy P = 2023
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$