Khai triển biểu thức a + b 4 thành tổng các đơn thức.
Khai triển biểu thức (a + b)4 thành tổng các đơn thức.
Tham khảo
(a + b)4 = (a + b)3(a + b)
= (a3 + 3a2b + 3ab2 + b3 )(a + b)
= a4 + 3a3b + 3a2b2 + ab3 + a3b + 3a2b2 + 3ab3 + b4
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
Khai triển biểu thức x - m 2 4 thành tổng các đơn thức:
A. x 4 – x 3 m + x 2 m 2 + m 4
B. x 4 – x 3 m 2 + x 2 m 4 – x m 6 + m 8
C. x 4 – 4 x 3 m + 6 x 2 m 2 – 4 x m + m 4
D. x 4 – 4 x 3 m 2 + 6 x 2 m 4 – 4 x m 6 + m 8
Sử dụng nhị thức Niuton với a = x, b = - m2
x − m 2 4 = x + ( − m 2 ) 4 = C 4 0 . x 4 + C 4 1 . x 3 . − m 2 + C 4 2 . x 2 . − m 2 2 + C 4 3 . x . − m 2 3 + C 4 4 . − m 2 4 = x 4 − 4 x m 2 3 + 6 x 2 m 4 − 4 x . m 6 + m 8
Chọn đáp án D
Nhận xét: học sinh có thể nhầm khi áp dụng sai công thức để dẫn đến các kết quả A,B và C
Tìm khai triển biểu thức 3 x - 4 17 thành đa thức, hãy tính tổng các hệ số của đa thức nhận được.
Đặt S là tổng các hệ số của đa thức khai triển.
Ta có:
Vậy tổng các hệ số của đa thức khai triển bằng -1.
Từ khai triển biểu thức 2 x − 1 2018 thành đa thức, tính tổng các hệ số bậc chẵn của đa thức nhận được
A. 3 2018 + 1 2
B. 3 2018 − 1 2
C. 3 2018 + 1
D. 3 2018 − 1
Đáp án A
Tổng các hệ số bậc chẵn khi khai triển đa thức 2 x − 1 2018 được tính bằng
S = C 2018 0 .2 2018 + C 2018 2 .2 2016 + C 2018 4 .2 2014 + ... + C 2018 2018 .2 0
Ta có x + 1 2018 = ∑ k = 0 2018 C 2018 k x 2018 − k ; − x + 1 2018 = ∑ k = 0 2018 C 2018 k − x 2018 − k
Cộng hai vế đẳng thức trên ta được
x + 1 2018 + − x + 1 2018 = 2 ( C 2018 0 x 2018 + C 2018 2 x 2016 + C 2018 4 x 2014 + ... + C 2018 2018 x 0 )
Với x = 2 ta có 3 2018 + 1 = 2. S ⇒ S = 3 2018 + 1 2
Từ khai triển biểu thức 2 x − 1 2018 thành đa thức, tính tổng các hệ số bậc chẵn của đa thức nhận được
A. 3 2018 + 1 2
B. 3 2018 - 1 2
C. 3 2018 + 1
D. 3 2018 - 1
Từ khai triển biểu thức \(\left(3x-4\right)^{17}\) thành đa thức, hãy tính tổng các hệ số của đa thức nhận được ?
Tổng các hệ số của đa thức f(x) = (3x – 4)17 bằng:
f(1) = (3 – 4)17= (– 1)17 = -1
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x
a. (x + y)2 = x2 + 2xy + y2
b. (x - 2y)2 = x2 - 4xy - 4x2
c. (xy2 + 1)(xy2 - 1) = x2y4 - 1
d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4
Chucs hocj toots
Câu 2:
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(x^2+10x+25=\left(x+5\right)^2\)
d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)
e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)
Câu 7:
a: Ta có: \(A=x^2-2x+7\)
\(=x^2-2x+1+6\)
\(=\left(x-1\right)^2+6\ge6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=5x^2-20x\)
\(=5\left(x^2-4x+4-4\right)\)
\(=5\left(x-2\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=2
Dùng hằng đẳng thức để khai triển và thu gọn các biểu thức sau:
(a^3+ab+b^2)(a^2-ab+b^2)-(a^4+b^4)
Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)
= (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2
Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)
= (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2