Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 23:10

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

Quynh Existn
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 22:31

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

Akai Haruma
17 tháng 7 2021 lúc 22:38

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Akai Haruma
17 tháng 7 2021 lúc 22:40

3. ĐKXĐ: $a\geq 0; a\neq 1$

\(C=\frac{\sqrt{a}(\sqrt{a}+1)-\sqrt{a}}{(\sqrt{a}+1)(\sqrt{a}-1)}:\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}:\frac{1}{\sqrt{a}-1}=\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}.(\sqrt{a}-1)=\frac{a}{\sqrt{a}+1}\)

 

hoàng
Xem chi tiết
hoàng
15 tháng 9 2023 lúc 15:39

help

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 18:21

loading...  => đề sai rồi bạn

Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 10:01

undefined

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 7 2021 lúc 19:57

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)

\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)

=2

b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{x^2}\)

Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 16:33

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

MiMi VN
Xem chi tiết
Thu Thao
19 tháng 5 2021 lúc 9:00

undefined

Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 11:07

a) Ta có: \(A=\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)

b) Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=-\sqrt{6-2\sqrt{5}}+1=-\left(\sqrt{5}-1\right)+1=-\sqrt{5}+1+1=2-\sqrt{5}\)

nam anh đinh
Xem chi tiết
⭐Hannie⭐
20 tháng 8 2023 lúc 9:51

\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\\ =\dfrac{x+2-\left(2x-4\sqrt{x}\right)-\left(\sqrt{x}+1-x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x+2-2x+4\sqrt{x}-\sqrt{x}-1+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}\)

Phong
20 tháng 8 2023 lúc 9:49

\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(A=\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(A=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)

\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+1\right)}\)

nam anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 10:22

\(A=\left(\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}+2-\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}+2}\)

\(=\dfrac{5\left(4\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)