Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 21:36

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 5 2017 lúc 15:44

 Thay x = 2 vào vế trái phương trình (1):

2 2  – 5.2 + 6 = 4 – 10 + 6 = 0

Vế trái bằng vế phải, vậy x = 2 là nghiệm của phương trình (1).

Thay x = 2 vào vế trái phương trình (2):

2 + (2 - 2) (2.2 + l) = 2 + 0 = 2

Vế trái bằng vế phải, vậy x = 2 là nghiệm của phương trình (2).

Bạch Dương năng động dễ...
Xem chi tiết
ʚ_0045_ɞ
26 tháng 3 2018 lúc 10:59

a. Thay x = 2 vào vế trái của phương trình (1), ta có:

22 – 5.2 + 6 = 4 – 10 + 6 = 0

Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (1).

Thay x = 2 vào vế trái của phương trình (2), ta có:

2 + (2 – 2)(2.2 +1) = 2 + 0 = 2

Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (2).

Vậy x = 2 là nghiệm chung của hai phương trình (1) và (2).

b. Thay x = 3 vào vế trái của phương trình (1), ta có:

32 – 5.3 + 6 = 9 – 15 + 6 = 0

Vế trái bằng vế phải nên x = 3 là nghiệm của phương trình (1).

Thay x = 3 vào vế trái của phương trình (2), ta có:

3 + (3 – 2)(2.3 + 1) = 3 + 7 = 10 ≠ 2

Vì vế trái khác vế phải nên x = 3 không phải là nghiệm của phương trình (2).

Vậy  x = 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của phương trình (2).

c. Hai phương trình (1) và (2) không tương đương nhau vì x = 3 không phải là nghiệm chung của hai phương trình.

Hồ Quốc Khánh
Xem chi tiết
đăng
2 tháng 4 2016 lúc 16:39

+) Nếu x<0 ta có

x^6>0, x^5<0, x^4>0, x^3<0,x^2>0, x<0=>x^6-x^5+x^4-x^3+x^2-x > 0=>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)

+)Nếu x > hoặc =0 thì x^6>x^5, x^4>x^3, x^2>x, 3/4>0 =>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)

Vậy phương trình trên vô nghiệm

Nguyễn Dũ Minh Quân
Xem chi tiết
ILoveMath
5 tháng 3 2022 lúc 21:45

a, Ta có:

\(\Delta=\left[-\left(m+5\right)\right]^2-4\left(2m+6\right)\\ =m^2+10m+25-8m-24\\ =m^2+2m+1\\ =\left(m+1\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm x1,x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=2m+6\end{matrix}\right.\)

\(x^2_1+x^2_2=13\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\\ \Leftrightarrow\left(m+5\right)^2-2\left(2m+6\right)=13\\ \Leftrightarrow m^2+10m+25-4m-12-13=0\\ \Leftrightarrow m^2+6m=0\\ \Leftrightarrow m\left(m+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-6\end{matrix}\right.\)

linh angela nguyễn
Xem chi tiết
Pham Tien Dat
6 tháng 4 2021 lúc 22:09

Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)

\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)

\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)

\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)

\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)

\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)

mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm

=> dpcm

Nguyễn Thị My
Xem chi tiết
👁💧👄💧👁
5 tháng 8 2021 lúc 14:55

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

Phạm Nguyễn Hà Chi
5 tháng 8 2021 lúc 15:18

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

Khôi
Xem chi tiết
Phùng Công Anh
4 tháng 7 2023 lúc 21:56

Khôi
Xem chi tiết
na na
Xem chi tiết