Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Minh
Xem chi tiết
Trần Ái Linh
27 tháng 5 2021 lúc 12:52

`A=sin(π-α)+cos(π+α)+cos(-α)`

`= sinα-cosα+cosα=sinα=3/5`

Nam Hoàng
Xem chi tiết
Hồng Phúc
4 tháng 5 2021 lúc 13:43

\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{\sqrt{21}}{5}\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{21}}{5}}{-\dfrac{2}{5}}=\dfrac{\sqrt{21}}{2}\)

\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{2}{\sqrt{21}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2019 lúc 18:01

cos(α+ π/2) = cos(α- π/2+ π) = - cos(α- π/2).

Vậy đáp án là D.

Dương Ca
Xem chi tiết
Akai Haruma
14 tháng 5 2021 lúc 0:00

Lời giải:

$\cos^2 a=1-\sin^2a=1-(\frac{3}{5})^2=\frac{16}{25}$

$\Rightarrow \cos a=\pm \frac{4}{5}$

Ta có:
\(\cos (a-\frac{\pi}{3})=\cos a\cos \frac{\pi}{3}-\sin a\sin \frac{\pi}{3}\)

\(=\frac{1}{2}\cos a-\frac{3\sqrt{3}}{10}=\frac{1}{2}.\pm \frac{4}{5}-\frac{3\sqrt{3}}{10}\)

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2018 lúc 5:22

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2018 lúc 14:12

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Do đó: sin(α + β) = sinαcosβ + cosαsinβ

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2019 lúc 11:16

+) Định nghĩa của sin α; cos α

Trên đường tròn lượng giác, xét cung AM có số đo α

Gọi H và K lần lượt là hình chiếu của M trên trục Ox, Oy.

Tung độ y = OK¯ của điểm M được gọi là sin của α : sin α = OK¯

Hoành độ x = OH¯ của điểm M được gọi là cos của α : cos α = OH¯

Trên đường tròn lượng giác trong mặt phẳng Oxy, lấy điểm A (1; 0) làm gốc.

Khi đó các cung có số đo hơn kém nhau một bội của 2π có điểm cuối trùng nhau.

Giả sử cung α có điểm cuối là M(x; y)

Khi đó với mọi k ∈ Z thì cung α + k2π cũng có điểm cuối là M.

Giải bài 1 trang 155 SGK Đại Số 10 | Giải toán lớp 10

sin α = y, sin (α + k2π) = y nên sin(α + k2π) = sinα

cos α = x, cos(α + k2π) = x nên cos(α + k2π) = cosα

Dương Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
15 tháng 6 2021 lúc 11:26

1.a) \(4cos\dfrac{\alpha}{2}.cos\dfrac{\beta}{2}.cos\dfrac{f}{2}\)

\(=\dfrac{1}{2}.4\left[cos\left(\dfrac{\alpha-\beta}{2}\right)+cos\left(\dfrac{\alpha+\beta}{2}\right)\right].cos\dfrac{f}{2}\)

\(=2.cos\left(\dfrac{\alpha-\beta}{2}\right)cos\dfrac{f}{2}+2.cos\left(\dfrac{\alpha+\beta}{2}\right).cos\dfrac{f}{2}\)

\(=cos\left(\dfrac{\alpha-\left(\beta+f\right)}{2}\right)+cos\left(\dfrac{\alpha-\beta+f}{2}\right)+cos\left(\dfrac{\alpha+\beta-f}{2}\right)+cos\left(\dfrac{\alpha+\beta+f}{2}\right)\)

\(=cos\left(\dfrac{2\alpha-\pi}{2}\right)+cos\left(\dfrac{\pi-2\beta}{2}\right)+cos\left(\dfrac{\pi-2f}{2}\right)+cos\left(\dfrac{\pi}{2}\right)\)

\(=cos\left(-\dfrac{\pi}{2}+\alpha\right)+cos\left(\dfrac{\pi}{2}-\beta\right)+cos\left(\dfrac{\pi}{2}-f\right)\)

\(=sin\alpha+sin\beta+sinf\) (đpcm)

Lê Thị Thục Hiền
15 tháng 6 2021 lúc 11:42

a2) \(1+4sin\dfrac{\alpha}{2}.sin\dfrac{\beta}{2}.sin\dfrac{f}{2}\)

\(=1+2\left[cos\left(\dfrac{\alpha-\beta}{2}\right)-cos\left(\dfrac{\alpha+\beta}{2}\right)\right].sin\dfrac{f}{2}\)

\(=1+2.cos\left(\dfrac{\alpha-\beta}{2}\right).sin\dfrac{f}{2}-2.cos\left(\dfrac{\alpha+\beta}{2}\right).sin\dfrac{f}{2}\)

\(=1+sin\left(\dfrac{f-\alpha+\beta}{2}\right)+sin\left(\dfrac{a-\beta+f}{2}\right)-sin\left(\dfrac{f-\left(\alpha+\beta\right)}{2}\right)-sin\left(\dfrac{\alpha+\beta+f}{2}\right)\)

\(=1+sin\left(\dfrac{\pi-2\alpha}{2}\right)+sin\left(\dfrac{\pi-2\beta}{2}\right)-sin\left(\dfrac{2f-\pi}{2}\right)-sin\left(\dfrac{\pi}{2}\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+sin\left(\dfrac{\pi}{2}-\beta\right)+sin\left(\dfrac{\pi}{2}-f\right)\)

\(=cos\alpha+cos\beta+cosf\) (đpcm)

Tiến Sơn Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 21:13

3/4pi<a<pi

=>sin a>0; cosa<0

sin2a=-4/5

=>2*sina*cosa=-4/5

=>sina*cosa=-2/5

(sina-cosa)^2=sin^2a+cos^2a-2*sina*cosa=1+4/5=9/5

=>sin a-cosa=3/căn 5