Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sammy
Xem chi tiết
Hải Yến
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 8:46

Thay k=1 và HPT ta có: 

\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;-1)

Khang Diệp Lục
3 tháng 2 2021 lúc 9:17

b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)

Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)

Thay vào biểu thức đã cho ở đề bài ta có :

 \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)

\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)

Sau một hồi bấm máy tính Casio thì ra k=2

Vậy k=2 thì Thỏa mãn yêu cầu đề bài

 

 

Khang Diệp Lục
3 tháng 2 2021 lúc 9:18

Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2018 lúc 6:35

Đáp án A

Phương án D không phải là hệ phương trình bậc nhất hai ẩn nên loại D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2017 lúc 16:44

Hệ phương trình có chứa phương trình bậc hai là hệ phương trình ở đáp án D nên loại D

+ Với hệ phương trình A:

x − y = − 2 x + y = 4 ⇒ 1 − 3 = − 2 1 + 3 − 4 ⇔ − 2 = − 2 4 = 4 (luôn đúng) nên (1; 3) là nghiệm của hệ phương trình  x − y = − 2 x + y = 4

+ Với hệ phương trình B:   2 x − y = 0 x + y = 4

Thay x = 1; y = 3 ta được 2.1 − 3 = 0 1 + 3 = 4 ⇔ − 1 = 0 1 + 3 = 4 (vô lý) nên loại B.

+ Với hệ phương trình C:  x + y = 4 2 x + y = 4

Thay x = 1; y = 3 ta được 1 + 3 = 4 2.1 + 3 = 4 ⇔ 4 = 4 5 = 4 (vô lý) nên loại C.

Đáp án:A

Nguyễn Trung Dũng
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:03

Ta thấy hệ \(\left\{ \begin{array}{l}x - y < 0\\2y \ge 0\end{array} \right.\) là hệ bất phương trình bậc nhất hai ẩn với các bất phương trình bậc nhất hai ẩn là \(x - y < 0;2y \ge 0\).

=> Chọn A.

Đáp án B loại vì \(3x + {y^3} < 0\) chứa \(y^3\).

Đáp án C loại vì \({y^2} + 3 < 0\) chứa \(y^2\).

Đáp án D loại vì \( - {x^3} + y < 4\) chứa \(x^3\).

Quỳnh Anh
Xem chi tiết
Hồng Phúc
15 tháng 12 2020 lúc 20:32

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)

\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)

\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)

a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành

\(t^2-5t+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)

Vậy ...

b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:16

Tham khảo:

Vẽ đường thẳng \(d:x + y - 3 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( {1;2} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 0 - 3 =  - 3 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(d\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

Vẽ đường thẳng \(d': - 2x + y + 3 = 0\) đi qua hai điểm \(A(1; - 1)\) và \(B\left( {2;1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 + 3 = 3 > 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

 

Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.

Khoa Bùi Phạm
Xem chi tiết
Dương Lam Hàng
25 tháng 2 2019 lúc 14:03

 Khoa Bùi Phạm (Em làm thử)

\(\hept{\begin{cases}\left|x\right|+x+\left|y\right|+y=2000\left(1\right)\\\left|x\right|-x+\left|y\right|-y=k\left(2\right)\end{cases}}\)

Lấy (1)-(2) \(\Rightarrow2x+2y=2000-k\)

                \(\Rightarrow2\left(x+y\right)=2000-k\)

Vì hệ phương trình có đúng hai no phân biệt (x;y)=(a;b) và (x;y)=(c;d)

Nên \(2\left(x+y\right)=a+b+c+d\)

Vậy \(a+b+c+d=2000-k\)

P/s: k chắc lắm -.- . Nếu có lỗi sai mong thầy/cô và các bn chỉ ra giúp em. Cảm ơn!