Giá trị của biểu thức A = a 2 log a 3 27 , 0 < a ≠ 1 . bằng?
A. 2 3 .
B. 9.
C. 27.
D. 3.
Đề bài
Cho hai số thực dương a, b thỏa mãn \({a^3}{b^2} = 100\). Tính giá trị của biểu thức \(P = 3\log a + 2\log b\)
\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)
Tính giá trị của các biểu thức sau:
a) \(A = {\log _2}3.{\log _3}4.{\log _4}5.{\log _5}6.{\log _6}7.{\log _7}8;\)
b) \(B = {\log _2}2.{\log _2}4...{\log _2}{2^n}.\)
\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)
Cho \(0 < a \ne 1\). Tính giá trị của biểu thức \(B = {\log _a}\left( {\frac{{{a^2} \cdot \sqrt[3]{a} \cdot \sqrt[5]{{{a^4}}}}}{{\sqrt[4]{a}}}} \right) + {a^{2{{\log }_a}\frac{{\sqrt {105} }}{{30}}}}\).
\(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}=\dfrac{a^2\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{4}{5}}}{a^{\dfrac{1}{4}}}=\dfrac{a^{\dfrac{47}{15}}}{a^{\dfrac{1}{4}}}=a^{\dfrac{173}{60}}\)
\(\Rightarrow log_a\left(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}\right)=log_a\left(a^{\dfrac{173}{60}}\right)=\dfrac{173}{60}\)
\(a^{2log_a\left(\dfrac{\sqrt{105}}{30}\right)}=a^{log_a\left(\dfrac{7}{60}\right)}=\dfrac{7}{60}\)
Vậy \(B=\dfrac{173}{60}+\dfrac{7}{60}=\dfrac{180}{60}=3\)
a) Tính \(y = {\log _2}x\) khi x lần lượt nhận các giá trị 1; 2; 4. Với mỗi giá trị của x > 0 có bao nhiêu giá trị của \(y = {\log _2}x\) tương ứng?
b) Với những giá trị nào của x, biểu thức \(y = {\log _2}x\) có nghĩa?
a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)
Với \(x = 2\) thì \(y = {\log _2}2 = 1\)
Với \(x = 4\) thì \(y = {\log _2}4 = 2\)
b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.
Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau (làm tròn kết quả đến chữ số thập phân thứ tư):
a) \({\log _3}15\);
b) \(\log 8 - \log 3\);
c) \(3\ln 2\).
cho hai số a,b là hai số thực đều lớn hơn 1. giá trị nhỏ nhất của biểu thức s=
\(\dfrac{1}{log_{b\sqrt[3]{a}}}\)+\(\dfrac{1}{log\sqrt[3]{ab^2}}\)
Sử dụng máy tính cầm tay, tính giá trị các biểu thức sau (làm tròn kết quả đến chữ số thập phân thứ sáu):
a) \({\log _5}0,5\);
b) \(\log 25\);
c) \(\ln \frac{3}{2}\).
a) \(log_50,5=-0,439677\)
c) \(In\left(\dfrac{3}{2}\right)=0,405465\)
Cho biểu thức A = log 2017 + log 2016 + log 2015 + log ... + log 3 + log 2 ... . Biểu thức A có giá trị thuộc khoảng nào trong các khoảng dưới đây?
A. log 2017 ; log 2018
B. log 2019 ; log 2020
C. log 2018 ; log 2019
D. log 2020 ; log 2021
Đáp án D
Ta có
A = log 2017 + log 2016 + log 2015 + log ... + log 3 + log 2 ... > log 2017 + log 2016 > log 2017 + 3 = log 2010 ⇒ A > log 2010
Áp dụng bất đẳng thức log x < x , ∀ x > 1 , ta có
2015 + log 2014 + log ... + log 3 + log 2 ... < 2015 + 2014 + log ... + log 3 + log 2 ... < 2015+1014+2013+ ... +3+2= 2017 × 2014 2
Khi đó
log 2016 + log 2015 + log 2014 + log ... + log 3 + log 2 ... < log 2016 + 2017 × 2014 2 < 4
Vậy A < log 2017 + 4 = log 2021 → A ∈ log 2010 ; 2021
Cho biểu thức A = log 2017 + log 2016 + log 2015 + log ... + log 3 + log 2 ... . Biểu thức A có giá trị thuộc khoảng nào trong các khoảng dưới đây?
A. log 2017 ; log 2018
B. log 2018 ; log 2019
C. log 2019 ; log 2020
D. log 2020 ; log 2021
Đáp án D.
Dựa vào đáp án ta suy ra 3 < A < 4 .
⇒ 3 < log 2019 < A 2016 = log 2016 + A 2015 < log 2020 < 4
⇒ 3 < log 2020 < A 2017 = log 2017 + A 2016 < log 2021 < 4
Vậy A 2017 ∈ log 2020 ; log 2021 .
Tính giá trị của biểu thức sau: \(log^2_{\dfrac{1}{a}}a^2+log_{a^2}a^{\dfrac{1}{2}}\) (1≠a>0)
A. \(\dfrac{17}{4}\)
B. \(\dfrac{13}{4}\)
C. \(-\dfrac{11}{4}\)
D. -\(\dfrac{15}{4}\)
\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)
\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)