Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tứ diệp thảo mãi mãi yêu...
Xem chi tiết
Thanh Tùng DZ
3 tháng 12 2017 lúc 20:38

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7

đặt x  = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

Trần Minh Tâm
3 tháng 12 2017 lúc 21:53

y = 7 đó

Vũ Quang Tùng
14 tháng 12 2017 lúc 20:20

Cho 3 số nguyên tố p, q, r sao cho p^q + q^p = r. Chứng minh rằng trong ba số p, q, r luôn có một số bằng 2.

Vũ Duy Long
Xem chi tiết
Thiên bình cute
Xem chi tiết
Nguyễn Lan Phương
22 tháng 4 2021 lúc 13:26

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮⋮13 và y ⋮⋮7

đặt x  = 13k ; y = 7t ( k, t ∈∈N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

Khách vãng lai đã xóa
Trần Hoài Trang
22 tháng 4 2021 lúc 13:30

Ta có :

  1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮ 13 và y ⋮ 7

Đặt x  = 13k ; y = 7t ( k, t ∈ N* ) , từ 7x2 + 13y2 = 1820 ta có :

  7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy x = 13

       y = 7

Chúc bạn học tốt nhá

Khách vãng lai đã xóa
Phan An
Xem chi tiết
Phan An
3 tháng 10 2021 lúc 19:34

câu d x^2+y^2-4x+4y=1

Phan An
Xem chi tiết
hưng phúc
3 tháng 10 2021 lúc 20:09

a. 3x2 - 4y2 = 18

<=> \(\left\{{}\begin{matrix}3x^2=18+4y^2\\4y^2=-\left(3x^2-18\right)\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{18+4y^2}{3}}\\y=\sqrt{\dfrac{-3x^2+18}{4}}\end{matrix}\right.\)

b, c, d tương tự nhé

hưng phúc
3 tháng 10 2021 lúc 20:17

b. 19x2 + 28y2 = 2001

<=> \(\left\{{}\begin{matrix}19x^2=2001-28y^2\\28y^2=2001-19x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{2001-28y^2}{19}}\\y=\sqrt{\dfrac{2001-19x^2}{28}}\end{matrix}\right.\)

c. x2 = 2y2 - 8y + 3

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\8y=2y^2+3-x^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\y=\dfrac{2y^2+3-x^2}{8}\end{matrix}\right.\)

d. x2 + y2 - 4x + 4y = 1

<=> \(\left\{{}\begin{matrix}x^2=1-y^2+4x-4y\\y^2=1-x^2+4x-4y\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\sqrt{1-y^2+4x-4y}\\y=\sqrt{1-x^2+4x-4y}\end{matrix}\right.\)

Tiến Hoàng Minh
Xem chi tiết
Minh Hiếu
Xem chi tiết
ILoveMath
3 tháng 10 2021 lúc 16:34

d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)

\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)

\(\Rightarrow\left(x-2\right)^2\le8\)

Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)

Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)

Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)

 

Hoàng Ngọc Tuyết Nung
Xem chi tiết
tran nguyen bao quan
2 tháng 1 2019 lúc 17:25

Ta có 7x2⋮7

1820⋮7

Vậy để phương trình \(7x^2+13y^2=1820\) có nghiệm nguyên thì 13y2⋮7⇔y2⋮7 (vì (13;7)=1) (1)

Ta lại có \(7x^2+13y^2=1820\Leftrightarrow7x^2=1820-13y^2\ge0\Leftrightarrow13y^2\le1820\Leftrightarrow y^2\le140\left(2\right)\)(2)

Ta lại có y2 là số chính phương (3)

Từ (1),(2),(3)\(\Rightarrow y^2=49\Leftrightarrow\)\(y=\pm7\Leftrightarrow x=\pm13\)

Vậy phương trình có 4 nghiệm (x;y)={(7;13);(-7;-13);(-7;13);(7;-13)}

Nguyễn Thanh Thủy
Xem chi tiết
Phạm Thị Thu Ngân
20 tháng 3 2017 lúc 15:39

a) x=y=2; x=y=-2

b) (x;y)=(-13;7)=(13;7)