Cho biết tanα = -3. Giá trị của P = 6 sin α − 7 cos α 6 cos α + 7 sin α bằng bao nhiêu ?
A. P = 4 3 .
B. P = 5 3 .
C. P = − 4 3 .
D. P = − 5 3 .
Cho góc α thỏa mãn tanα = 2. Tính giá trị biểu thức P = 1 + cos α + cos 2 α sin α + sin 2 α
A. P = 4
B. P = 1/2
C. P = 1
D. P = 1/4
Chọn B.
Ta có: 1 + cos2α = 2cos2α và sin2α = 2sinα.cosα.
Mà tanα = 2 nên cot α = 1/2
Suy ra:
Cho góc nhọn α biết rằng cos α - sin α = 1/3 . Giá trị của sin α .cos α là
A. 2 3
B. 3 2
C. 4 9
D. 9 4
Tính giá trị của biểu thức biết tanα=-2
\(\dfrac{2\sin\alpha+\cos\alpha}{2\sin^3\alpha-\cos^3\alpha}\)
\(\dfrac{2sina+cosa}{2sin^3a-cos^3a}=\dfrac{\dfrac{2sina}{cos^3a}+\dfrac{cosa}{cos^3a}}{\dfrac{2sin^3a}{cos^3a}-\dfrac{cos^3a}{cos^3a}}=\dfrac{2tana.\dfrac{1}{cos^2a}+\dfrac{1}{cos^2a}}{2tan^3a-1}\)
\(=\dfrac{2tana\left(1+tan^2a\right)+1+tan^2a}{2tan^3a-1}=...\) (thay số và bấm máy)
cho sin α bằng 1/3 và π/2 <α<π . Tính giá trị của cosα,tanα,và cotα
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
Cho cos α = 2/3. Tính giá trị của biểu thức A = tan α + 3 c o t α tan α + c o t α
A. 7/18
B. 1/2
C. 5/12
D. 17/9
Cho sin α+β= \(\dfrac{1}{3}\),tanα=-2tanβ
Tính A= sin(α+\(\dfrac{3\pi}{8}\)).cos(α+\(\dfrac{\pi}{8}\))+sin(β-\(\dfrac{5\pi}{12}\)).sin(β-\(\dfrac{\pi}{12}\))
Để giải bài toán này, ta sẽ sử dụng các công thức và quy tắc trong lượng giác để tính toán.
Trước hết, ta có: sin(α+β) = sinα.cosβ + cosα.sinβ cos(α+β) = cosα.cosβ - sinα.sinβ
Đề bài cho α+β = 1313 và tanα = -2tanβ. Ta có thể suy ra các thông tin sau: tanα = -2tanβ => sinα/cosα = -2sinβ/cosβ => sinα.cosβ = -2sinβ.cosα
Bài toán yêu cầu tính A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12)
Để tính A, ta sẽ thay các giá trị đã biết vào công thức trên:
A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12))
Tuy nhiên, để tính giá trị chính xác của A, cần biết thêm giá trị cụ thể của α và β. Trong câu hỏi của bạn, không có thông tin về α và β, do đó không thể tính toán giá trị của A.
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
a: pi/2<a<pi
=>sin a>0
\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)
b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c: \(sin\left(a-\dfrac{pi}{3}\right)\)
\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)
d: \(cos\left(a-\dfrac{pi}{6}\right)\)
\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)
Cho biết sin α +cos α = a. Giá trị của sin α .cos α bằng bao nhiêu?
A. sinα.cosα = a2.
B. sinα.cosα = 2a.
C. sin α . cos α = 1 - a 2 2
D. sin α . cos α = a 2 - 1 2
Tính giá trị của biểu thức P = sin 2 α . sin α 1 + cos 2 α biết cos α = - 2 3
Chọn D.
Ta có : sin2a = 2.sina. cosa và sin2a = 1 - cos2a.
Do đó;
Rút gọn biểu thức
P=cos(180°- α).tanα + sin(180°- α)
A. P=0
B. P=1
C. P=-2sinα
D. P=2sinα
\(P=cos\left(180^o-\alpha\right).tan\alpha+sin\left(180-\alpha\right)\\ =-cos\alpha.\dfrac{sin\alpha}{cos\alpha}+sin\alpha\\ =-sin\alpha+sin\alpha=0\)
=> Chọn A