Tính \(\frac{a.b.c}{a+b+c}\),biết giữa a,b,c có các quan hệ:
(a+b):(8-c):(b+c):(10+c)=2:5:3:4
Cho a,b,c là các số dương a.b.c=8 va \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
Tính M =\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)
Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)
Vậy M = 6
Cho a,b,c>0 thỏa mãn a.b.c=1. Tìm GTNN của \(T=\frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+\frac{1}{4}\left(a^4+b^4+c^4\right)\)
biết a/2=b/3=c/5 và a.b.c=1920.Tính a+b+c
ai làm đc cho 10 like
1) Biết a^2 + b^2 = 13 và a.b = 6. Tính |a + b|
2) Cho a, b, c thỏa mãn: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Tính giá trị của biểu thức: \(C=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\)
3) Cho A là một số viết bởi 100 chữ số 6. Khi chia A cho 15 ta được chữ số thập phân liền sau dấu phẩy của thương là bao nhiêu?
4)Tìm bậc của đa thức \(f\left(x\right)=3.x^4.y^2+5.x^3.y^2-3.y^2.x^4+3.x^3+7\)
5) Cho \(f\left(x\right)=\left(8.x^2+x-8\right)^{2016}.\left(-3.x^3-4.x^2+x+5\right)^{2015}\)
Tính tổng các hệ số sau khi thu gọn
6) Cho \(Q\left(x\right)=a.x^4.y^3+10.x.y^2+4.y^3-2.x^4.y^3-3.x.y^2+b.x^3.y^4\)
Biết a, b là hằng số và Q có bậc là 3. Tìm a, b
hix, lm bt vio ak, mình pít kết quả hết oy, nhg mà thầy kiu trình bày ra, bạn nào giúp mình với
tính \(\frac{abc}{a+b+c}\)biết rằng (a+b):(8-c):(10+c)=2:5:3:4
tìm 3 số a,b,c biết\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a.b.c=480
Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
Suy ra: a=3k, b=4k, c=5k
a.b.c=480 suy ra 3k.4k.5k=480
suy ra: 60.k^3=480
k^3=480:60=8
Vậy k=2
Thay vào ta có:a=6, b=8,c=10
Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(\Rightarrow\) a = 3k, b = 4k, c = 5k
a.b.c=480 \(\Rightarrow\) 3k.4k.5k=480
\(\Rightarrow\) 60.k^3=480
k^3 = 480:60 = 8
Vậy k= 2
Thay vào ta có:a = 6 , b = 8, c = 10
Cho a, b, c là các số thực khác 1 thỏa mãn a.b.c = 1, biết rằng:
a^2 + b^2 + c^2 - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca)
Tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1
Để giải bài toán này, ta sẽ bắt đầu bằng việc tìm giá trị của a + b + c và ab + bc + ca.
Theo đề bài, ta có: a.b.c = 1
Đặt S = a + b + c và P = ab + bc + ca. Ta có thể viết lại biểu thức ban đầu như sau: (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca) (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8S - 8P
Để đơn giản hóa công thức, ta sẽ nhân cả hai vế của phương trình với a^2b^2c^2: (a^2b^2c^2)(a^2 + b^2 + c^2) - (a^2b^2c^2)(1/a^2 + 1/b^2 + 1/c^2) = 8(a^2b^2c^2)(S - P)
Sau khi nhân và rút gọn, ta được: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(a^2b^2c^2)(S - P)
Do a.b.c = 1, ta có: a^2b^2c^2 = 1
Thay lại vào phương trình trên, ta có: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(S - P)
Rút gọn các thành phần, ta được: a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 = 8(S - P)
Ta có thể viết lại đẹp hơn bằng cách nhân 2 vào cả hai vế: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16(S - P)
Rút gọn, ta được: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16S - 16P
Từ đó, ta có: 16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
Chú ý rằng: P = ab + bc + ca S = a + b + c
Tiếp theo, ta sẽ xem xét biểu thức P = 1/a-1 + 1/b-1 + 1/c-1. Ta có thể viết lại biểu thức này như sau: P = (1/a + 1/b + 1/c) - 3
Ta biết rằng abc = 1, do đó: 1/a + 1/b + 1/c = ab + bc + ca
Thay vào biểu thức P, ta có: P = (ab + bc + ca) - 3
Như vậy, biểu thức P có thể được thay bằng biểu thức P = P - 3.
Tiếp theo, ta sẽ sử dụng kết quả từ phương trình trên để tính giá trị của P.
16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
Thay P = P - 3 vào phương trình trên, ta có: 16(P - 3) - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
Rút gọn và chuyển thành phương trình bậc hai: 16P - 48 - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)
8P - 24 - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2
8P - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 + 24
8(P - S) = (a^2b^2 + a^2c^2 + b^2c^2)^2 - (a^2b^2 + a^2c^2 + b^2c^2) - a^2b^2 - a^2c^2 - b^2c^2 + 24
Đặt Q = a^2b^2 + a^2c^2 + b^2c^2, ta có: 8(P - S) = Q^2 - Q - Q + 24
8(P - S) = Q^2 - 2Q + 24
8(P - S) = (Q - 4)^2
Ta có thể viết lại thành phương trình: (P - S) = (Q - 4)^2 / 8
Do đó, giá trị của P - S là bình phương của một số chia cho 8.
Tuy nhiên, chúng ta không có thông tin cụ thể về giá trị của Q, vì vậy không thể tìm ra giá trị chính xác của P - S.
Vì vậy, không thể tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1 chỉ dựa trên thông tin đã cho trong bài toán.
Tìm a,b,c biết \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)và a.b.c=22,5
Đặt\(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a= 3k; b= 12k;c=5k
a.b.c = 22,5 => 3k.12k.5k = 22,5 = 180k3 = 22,5 => k3 = 0,125 => k = 0,5
Do đó:\(\frac{a}{3}=0,5=>a=1,5\)
\(\frac{b}{12}=0,5=>b=6\)
\(\frac{c}{5}=0,5=>c=2,5\)
Vậy...
Đặt \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a = 3k ; b = 12k ; c = 5k
a.b.c = 22,5 => 3k.12k.5k = 22,5 => 180k3 = 22,5 => k3 = 0,125 => k= 0,5
Do đó : \(\frac{a}{3}=0,5\Rightarrow a=1,5\)
\(\frac{b}{12}=0,5\Rightarrow b=6\)
\(\frac{c}{5}=0,5\Rightarrow c=2,5\)
Vậy ...
Ta có: a/3=b/12=c/5. Đặt a=3k ; b=12k ; c=5k
=>3.12.5.k^3=22,5 => k^3=0,125=>k=0,5
=>a=3.0,5=1,5
b=12.0,5=6
c=5.0,5=2,5