Số nào chia hết cho 10 A.33 B.45 C.130 D. 447
1.Chứng minh rằng tích của 5 số tự nhiên liên tiếp chia hết cho 5. 2.Tìm x,y để: a) A = x81y chia hết cho 2,3,5,9 b) B = 32x17 chia hết cho 45 c) C = 29x13y chia hết cho 45 d) D = 34x5y chia hết cho 36 3. Cho P = 32 + 33 + 34 + . . . + 3121 Chúng minh rằng: a) P chia hết cho 4 b) P chia hết cho 6 c) P chia hết cho 13
CMR
a, 7^6+7^5-7^4 chia hết cho 55
b, 81^7-27^9+3^29 chia hết cho 33
c, 8^12-2^33-2^30 chia hết cho 55
d, 10^9+10^8+10^7 chia hết cho 555
e, 9^11-9^10-9^9/639 thuộc N
f, 81^7-27^9-9^13 chia hết cho 45
g, (36^36 - 9^2000)chia hết cho 45
h, 24^54*54^24*2^10 chia hết cho72^63
a)
\(7^6+7^5-7^4\)
\(=7^4\cdot\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\left(đpcm\right)\)
Mấy câu kia tương tự, dài quá
chứng minh rằng
a) 81 mũ 7 - 27 mũ 9 + 3 mũ 29 chia hết cho 33
b) 8 mũ 12 - 2 mũ 33 - 2 mũ 30 chia hết cho 55
c) 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 555
d) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết 45
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
Câu18.Trong các tổng sau, tổng chia hết cho 5 là:
A.10+25+34+2000 B.5+10+70 +1995
C.25+15+33+45 D.15+25+2000+1997
1/Chứng minh rằng:
a) A=1+3+32+.......+311 chia hết cho 40
b) B=165+215 chia hết cho 33
c) C=5+52+53+......+58 chia hết cho 30
d) D=45+99+180 chia hết cho 9
e) E= 1028+8 chia hết cho 72
c) C = 5 + 52 + 53 +...+ 58
= ( 5 + 52 ) + ( 53 + 54 ) + ( 55 + 56 ) + ( 57 + 58 )
= 5 + 52 + 52( 5 + 52 ) + 54( 5 + 52 ) + 56( 5 + 52 )
= 5 + 52 ( 1 + 52 + 54 + 56 )
= 30. ( 1 + 52 + 54 + 56 ) chia hết cho 30
Vậy C = 5 + 52 + 53 +...+ 58 chia hết cho 30
b) B = 165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215(25 + 1)
= 215.33 chia hết cho 33
Vậy B = 165 + 215 chia hết cho 33
e) E = 1028 + 8
Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 \(\Rightarrow\) 1028 + 8 chia hết cho 8 (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 \(\Rightarrow\) 1028 + 8 chia hết cho 9 (2)
Mà UCLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) \(\Rightarrow\) 1028 + 8 chia hết cho 72 ( do 8.9=72 )
Chứng minh rằng :
a/ 8^7 - 2^18 chia hết cho 14
b/ 10^6 - 5^7 chia hết cho 59
c/ 7^6 + 7^5 - 7^4 chia hết cho 55
d/ 16^5 + 2^15 chia hết cho 33
e/ 36^36 - 9^10 chia hết cho 45
f/ 81^7 - 27^9 - 9^13 chia hết cho 405
g/ 7^1000 - 3^1000 chia hết cho 10
h/ ( 2^10 + 2^11 + 2^12 ) : 7 là một số tự nhiên
i/ 313^5.299 - 313^6.36 chia hết cho 7
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
a/ 8^7 - 2^18 chia hết cho 14
b/ 10^6 - 5^7 chia hết cho 59
c/ 7^6 + 7^5 - 7^4 chia hết cho 55
d/ 16^5 + 2^15 chia hết cho 33
e/ 36^36 - 9^10 chia hết cho 45
f/ 81^7 - 27^9 - 9^13 chia hết cho 405
g/ 7^1000 - 3^1000 chia hết cho 10
h/ ( 2^10 + 2^11 + 2^12 ) : 7 là một số tự nhiên
i/ 313^5.299 - 313^6.36 chia hết cho 7
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
Bài 1 – Chứng minh rằng: a) A = 1 + 3 + 32 + ...... + 311 chia hết cho 4. b) B = 165 + 215 chia hết cho 33. c, ∀𝑛 ∈ 𝑁 thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30. d, ∀𝑛 ∈ 𝑁 thì tích (n + 3)(n + 6) chia hết cho 2
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
1 Chứng minh rằng
b,B=165+215 chia hết cho 33
c,C=45+99+180 chia hết cho 9
d,D=2+22+23+...+2^60 chia hết cho 3;7;5
e,E=10n+18n-1 chia hết cho 27
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
Bài 1 :Cho tổng A=27+33+45+ x thuộcN và x < 10.Tìm x để a ) A chia hết cho 3 b) A ko chia hết cho 3
Bài 2: Tìm chữ số*,x,y,biết: 17* chia hết cho 2. 2x9 chia hết cho 3 x12y chia hết cho 2,3,5.
Bài 3.Tìm x biết a)x chia hết 8 và x<30 b)14 chia hết x,2 <x<= 14 x chia hết 6 , x chia hết 10 và nhỏ nhất khác 0 d) 42 chia hết x;30 chia hết x và 5 <x<10
Giúp mình vs mọi người ơi Mình cần gấp lắm ạ Vote5* và cho câu trả lời hay nhất nha mn