Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Phạm Thị Thanh Huyền
Xem chi tiết
Nobi Nobita
30 tháng 4 2020 lúc 15:52

2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)

Vì \(x\)\(x+1\)và \(x+2\)là 3 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)

mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)

hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )

Khách vãng lai đã xóa
Phạm Thị Thanh Huyền
3 tháng 5 2020 lúc 18:39

Mình cảm ơn ạ !!!

Khách vãng lai đã xóa
Tô Hoài Dung
Xem chi tiết
Thắng Nguyễn
13 tháng 10 2016 lúc 18:17

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

minh anh minh anh
13 tháng 10 2016 lúc 15:21

P OI cai nay dung bat dang thuc co si do

Tô Hoài Dung
13 tháng 10 2016 lúc 18:06

k biết làm mà!! )))

Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 22:12

Sửa đề: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}=\dfrac{2xy}{x^2+y^2}\)

Ta có: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}:\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}:\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{2xy}{x^2y^2}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}:\dfrac{x^2-2xy+y^2}{\left(xy\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy}{\left(x-y\right)^2}\cdot\dfrac{\left(x-y\right)^2}{x^2+y^2}\)

\(=\dfrac{2xy}{x^2+y^2}\)

santa
20 tháng 12 2020 lúc 22:47

Có thể đề bắt cm : VT \(\le1\)

áp dụng kq của bạn thịnh : VT = \(\dfrac{2xy}{x^2+y^2}\le\dfrac{2xy}{2xy}=1\)   (x2 + y2 \(\ge\) 2xy)

Ko có tên
Xem chi tiết
I don
19 tháng 10 2018 lúc 19:04

Sửa đề: x2 + y2 + 2 = xy + x + y thì x = y = 1

Bài làm

ta có: x2 + y2 + 2 = xy + x + y

=> 2x2 + 2y2 + 2 = 2xy + 2x + 2y

=> 2x2 + 2y2 + 2 - 2xy - 2x - 2y = 0

(x2 -2xy+y2) + (x2 -2x + 1) + (y2 -2y+1) = 0

(x-y)2 + (x-1)2 + (y-1)2 = 0

=> x - 1 = 0 => x = 1

y-1 = 0 => y = 1

=> x=y=1 

xl nhưng mk nghĩ bn sai đề! nếu như đề ko sai thì cho mk xl, mk ko bk lm đề bn ra

linh
11 tháng 11 2018 lúc 10:05

đề bài => (x-y)^2+xy-x-y+1=0   

=> ((x-1)-(y-1))^2+ (x-1)(y-1)=0 

=> (x-1)^2 - (x-1)(y-1) + 1/4(y-1)^2 +3/4(y-1)^2=0   

=> ((x-1)-1/2(y-1))^2+3/4(y-1)^2=0 

VT luôn lớn hơn hoặc =0 dấu bằng xảy ra khi x=y=1

Ko có tên
18 tháng 2 2019 lúc 23:47

Công chưa ori,dòng thứ 4 từ chữ “sửa”,nếu bạn nhân cả 2 vế vơiws bạn thì số 2 đấy phải là 4, nếu mà mà số 2 thì dòng 3 phải là 1=> đề bài đúng nhé❤️

Nguyễn Minh Quang
Xem chi tiết
Akai Haruma
25 tháng 6 lúc 21:50

1/

Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$

$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$

$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$

Akai Haruma
25 tháng 6 lúc 21:58

2/

Xét hiệu:

$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$

$=1+2x+2y+2xy-3x^2-3y^2$

$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên: 

$2x(1-x)>0$

$2y(1-y)>0$

$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$

$\Rightarrow 1+xy-x^2-y^2>0$

$\Rightarrow 1+2xy-x^2-y^2>0$

Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$

$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$

Nguyễn Nhi Linh
Xem chi tiết
Nguyễn Nhi Linh
21 tháng 7 2018 lúc 10:10

Giúp mình với nhé

Giang Thủy Tiên
13 tháng 10 2018 lúc 16:37

2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :

\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)

\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)

Linh Nguyễn
Xem chi tiết
Nguyễn Thị Yến Nhi
26 tháng 11 2016 lúc 21:56

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

Tran Thi Hue
26 tháng 11 2016 lúc 21:20

mk chua hok den nen ko co bit lam

Linh Nguyễn
26 tháng 11 2016 lúc 21:23

cảm ơn b nhé

Nguyễn Trí Hùng
Xem chi tiết