Đường thẳng nào trong các đường thẳng sau đây trục đối xứng của parabol y = − 2 x 2 + 5 x + 3
A. x = 5 2
B. x = − 5 2
C. x = 5 4
D. x = − 5 4
Trong mặt phẳng Oxy, cho parabol (P) : x2 - 4x + 9. Hỏi parabol nào sau đây là ảnh của parabol (P) qua phép đối xứng trục, có trục là đường thẳng x - 2 = 0
Parabol \(y=x^2-4x+9\) có trục đối xứng là đường thẳng \(x=-\dfrac{b}{2a}=2\)
Nên phép đối xứng trục qua đường thẳng \(x-2=0\) hay \(x=2\) sẽ cho ảnh là chính nó
Hay pt ảnh của (P) vẫn là \(x^2-4x+9\)
Câu 10: Trong các mệnh đề dưới đây, mệnh đề nào sai ? A. Đồ thị hàm số lẻ nhận đường thẳng y x = làm trục đối xứng. B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng. C. Đồ thị hàm số chẵn nhận nhận đường thẳng y x =− làm trục đối xứng. D. Đồ thị hàm số lẻ đối xứng qua gốc toạ độ. Đồ thị hàm số chẵn, hàm số lẻ đối xứng qua đâu
Đáp án :
B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng.
Câu 1: Cho parabol (P):y=x^2+bx+c (b,c là các tham số thực)
a. Tìm giá trị của b,c biết parabol (P) đi qua điểm M(-3;2) và có trục đối xứng là đường thẳng x=-1
b. Với giá trị của b,c tìm được ở câu a), tìm m để đường thẳng d:y=-x-m cắt parabol(P) tại 2 điểm phân biệt A,B sao cho tam giác OAB vuông tại O( với O là gốc toạ độ)
Xác định parabol y = 3x^2+bx+c, biết rằng parabol đó đi qua A(2;19) và nhận đường thẳng x = -2/3 làm trục đối xứng.
Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$
$\Rightarrow 2b+c=7(1)$
$x=\frac{-2}{3}$ là trục đối xứng
$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$
$\Rightarrow b=4(2)$
Từ $(1); (2)\Rightarrow c=-1$
Vậy parabol có pt $y=3x^2+4x-1$
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)
xác định parabol y= a^2+bx+2 biết rằng p đi qua điểm m (1;5) và có trục đối xứng là đường thẳng x= -1/4
\(\left(P\right):y=ax^2+bx+2\)
Vì (P) đi qua điểm \(M\left(1;5\right)\) nên ta có: \(a.1^2+b.1+2=5\Leftrightarrow a+b=3\) (1)
Mà (P) có trục đối xứng là \(x=\dfrac{-1}{4}\) nên: \(\dfrac{-b}{2a}=\dfrac{-1}{4}\)
\(\Leftrightarrow-2a=-4b\Leftrightarrow-2a+4b=0\) (2)
Từ (1) và (2) ta có:
\(\left\{{}\begin{matrix}a+b=3\\-2a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy parabol cần tìm có dạng: \(y=2x^2=x+2\)
Xác định parabol \(y=ax^2-4x+c\) có trục đối xứng là đường thẳng x =2 và cắt trục hoành tại điểm (3;0)
a) y = -x2 - 3;
b) y = (x - 3)2;
c) y = √2x2 + 1;
d) y = -√2(x + l)2
Không vẽ đồ thị, hãy mô tả đồ thị của mỗi hàm số trên bằng cách điền vào chỗ trống (...) theo mẫu:
- Đỉinh của parabol là điểm có tọa độ...
- Parabol có trục đối xứng là đường thẳng...
- Parabol hướng bề lõm (lên trên/ xuống dưới)...
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = 1 3 x + 2 .Viết phương trình đường thẳng ∆ là ảnh của đường thẳng d qua phép đối xứng trục là đường thẳng y=x
A. y = 3 x − 6
B. y = 3 x + 6
C. y = - 3 x + 6
D. y = - 3 x - 6
Trong mặt phẳng Oxy cho đường thẳng d: x = 2. Trong các đường thẳng sau, đường nào là ảnh của d qua phép đối xứng tâm O?
A. x = 2
B. y = 2
C. y = -2
D. x = y
Vẽ hình trên mặt phẳng tọa độ Oxy.
Đáp án A