Đẳng thức 1 + a + a 2 + … + a n + … = 1 1 − a đúng khi:
A. a ≠ 1.
B. a < 1.
C. a < 1.
D. a ≥ 1.
Trong các đẳng thức sau, đẳng thức nào là hằng đẳng thức?
a) \(a\left( {a + 2b} \right) = {a^2} + 2ab\)
b) \(a + 1 = 3a - 1\)
a) \(a\left( {a + 2b} \right) = {a^2} + 2ab\) là hằng đẳng thức.
b) \(a + 1 = 3a - 1\) không là hằng đẳng thức vì khi ta thay \(a = 2\) thì hai vế của đẳng thức không bằng nhau.
Tìm tất cả các số nguyên n thoả mãn đẳng thức:
a(n - 2) (n - 3) = 1 (a ≠ 1)
a(n - 2) (n - 3) = 1
⇒ a(n - 2) (n - 3) = a0
⇒ (n - 2) (n - 3) = 0
⇒ \(\left[{}\begin{matrix}n-2=0\\n-3=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}n=2\\n=3\end{matrix}\right.\)
Vậy n \(\in\) {2; 3}
a,Lần lượt thay a=1;2:;3........n trong hàng đẳng thức (n+!)2=n2+2n+1 rồi cộng theo vế các đẳng thức .Từ đó tính tổng S=1+2+...+n
b, Hãy tính tổng S1 =12+22+...+n2 từ (n+1)3
a,
\(2^2=\left(1+1\right)^2=1^2+2.1+1\)
\(3^2=\left(2+1\right)^2=2^2+2.2+1\)
....
\(\left(n+1\right)^2=n^2+2n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)
\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)
\(\Leftrightarrow2S=\left(n+1\right)n\)
\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)
b, Tương tự a
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
...
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)
\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)
\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)
\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)
\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Cho các số a, b, c, d > 0 và các bất đẳng thức sau :
(1) 5ad(1 - b2) > 1 (2) 32bc(1 - c2) > 5
(3) 4ac(1 - d2) > 7 (4) 14bd(1 - a2) > 1
Chứng minh rằng trong các bất đẳng thức trên luôn có ít nhất một bất đẳng thức sai.
CM BẤT ĐẲNG THỨC
A;[-A^5.(-A^5)]^2+[-A^2.(-A^2)]^5=0
B;(-1)^N.A^N+K=(--A)^N.A^K
\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O
=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)
\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)
\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)
=\(\left(-a^n\right).a^k\)
Những đẳng thức nào sau đây là hằng đẳng thức?
a) \(x + 2 = 3x + 1\)
b) \(2x\left( {x + 1} \right) = 2{x^2} + 2x\)
c) \(\left( {a + b} \right)a = {a^2} + ba\)
d) \(a - 2 = 2a + 1\)
a) \(x + 2 = 3x + 1\) không là hằng đẳng thức vì khi ta thay \(x = 0\) thì hai vế của đẳng thức không bằng nhau.
b) \(2x\left( {x + 1} \right) = 2{x^2} + 2x\) là hằng đẳng thức vì với mọi giá trị của x thì hai vế bằng nhau.
c) \(\left( {a + b} \right)a = {a^2} + ba\) là hằng đẳng thức vì với mọi giá trị của a, b thì hai vế bằng nhau.
d) \(a - 2 = 2a + 1\) không là hằng đẳng thức vì khi ta thay \(a = 0\) thì hai vế của đẳng thức không bằng nhau.
Chứng minh đẳng thức sau với a ϵ N*.
an+1 – 1 = (a-1)(an + an-1 + ... + a + 1)
Lời giải:
\(a^{n+1}-1=(a^{n+1}-a^n)+(a^n-a^{n-1})+.....+(a-1)\)
\(=a^n(a-1)+a^{n-1}(a-1)+...+(a-1)=(a-1)(a^n+a^{n-1}+...+1)\)
Ta có đpcm.
chứng minh bất đẳng thức
(a1+a2+....+an)2 lớn hơn hoặc bằng n(a12+a22+.....+an2)
Ban tham khao BDT Cosi dang tong quat nha
Cho abc=1.Cm a/(ab+a+1)^2+b/(bc+b+1)+c/(ac+c+1)>=1/(a+b+c).Đẳng thức xảy ra khi nào
Bài 1. Áp dụng hằng đẳng thức :
a) (a + 1)(a + 2)(a^2 + 4)(a - 1)(a^2 +1)(a - 2).
b) (1- x- 2x^3+ 3x^2)(1- x + 2x^3- 3x^2).
Bài 2. Tính nhẩm theo hằng đẳng thức :
19^2 ; 28^2 ; 81^2 ; 91^2.
cho a 1
L.I.K.E
để a
làm hộ bn này bài này nào