Tính tổng: 1/6 + 1/12 + 1/20 + 1/30 + 1/42.
tính tổng S= 1/6+1/12+1/20+1/30+1/42+1/56
S= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
S= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 -1/6 +1/6 - 1/7 + 1/7 - 1/8
S= 1/2 - 1/ 8
S= 3/8
S= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 - ...+ 1/7 - 1/8
= 1/2 - 1/8
= 3/8
S=(1/2.3) +(1/3.4) + (1/4.5) +...+1/7.8
S=1/2-1/3+1/3-1/4 +1/4-1/5+...+1/7-1/8
S=1/2-1/8
S=3/8
tính tổng sau
1/2+1/6+1/12+1/20+1/30+1/42+1/56
giải giúp mik vs
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{182}\)
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 = 1/182
TÍNH NHANH TỔNG SAU :
1/42 +1/30 +1/20 +1/12 +1/6
CÁC BẠN ƠI GIÚP MÌNH !
BẠN NÀO LÀM ĐƯỢC THÌ MÌNH K CHO NHÉ !
A=1/6 +1/12 +1/20 +1/30 +1/42
=1/2.3 +1/3.4 +1/4.5 +1/5.6 +1/6.7
=1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
=1/2 - 1/7 = 5/14
\(\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}\)
\(=\frac{1}{7\cdot6}+\frac{1}{6\cdot5}+\frac{1}{5\cdot4}+\frac{1}{4\cdot3}+\frac{1}{3\cdot2}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}\)
\(=\frac{5}{14}\)
Tính tổng: \(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(B=1-\dfrac{1}{7}\)
\(B=\dfrac{6}{7}\)
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{6}{7}\)
a) tính tổng A= 1/6+1/12+1/20+1/30+1/42+1/56
cho mình cả cách làm ạ^^
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
a) \(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}\)
\(=\)\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
Tính: B=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
Tính tổng A= 1-5/6+7/12-9/20+11/30-13/42+15/56-17/72+1/90
Tính
1. A= 1/2+1/6+1/12+/1/20+1/30+1/42+1/56
2. B = 3/2+5/6+7/12+-9/20+11/30-13/42+15/56
A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8
A = 1 + ( -1/2 + 1/2 ) + ( -1/3 + 1/3 ) + ( -1/4 + 1/4 ) + ( -1/5 + 1/5 ) + ( -1/6 + 1/6 ) + ( -1/7 + 1/7 ) - 1/8
A = 1 + 0 + 0 + 0 + 0 + 0 + 0 - 1/8
A = 1 - 1/8
A = 7/8
* Sửa đề tí nhé
B = 3/2 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56
B = 3/1.2 - 5/2.3 + 7/3.4 - 9/4.5 + 11/5.6 - 13/6.7 + 15/7.8
B = 3 - 3/2 - 5/2 - ( -5/3 ) + 7/3 - 7/4 - 9/4 - ( -9/5 ) + 11/5 - 11/6 - 13/6 - ( -13/7 ) + 15/7 - 15/8
B = 3 - 3/2 - 5/2 + 5/3 + 7/3 - 7/4 - 9/4 + 9/5 + 11/5 - 11/6 - 13/6 + 13/7 + 15/7 - 15/8
B = 3 + ( -3/2 - 5/2 ) + ( 5/3 + 7/3 ) + ( -7/4 - 9/4 ) + ( 9/5 + 11/5 ) + ( -11/6 - 13/6 ) + ( 13/7 + 15/7 ) - 15/8
B = 3 + -4 + 4 + -4 + 4 + -4 + 4 - 15/8
B = 3 + 0 + 0 + 0 - 15/8
B = 3 - 15/8
B = 9/8
tính tổng : A = 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56
`= 1 - 1/2 + 1 - 1/6 + ... + 1 - 1/56`
`= 1 - 1/(1.2) + 1 - 1/(2.3) + ... + 1 - 1/(7.8)`
`= 7 - (1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+ 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8`.
`= 8 - 1/8`
`= 63/64`.
`A=1/2+5/6+11/12+19/20+29/30+41/42+55/56`
`A=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56`
`A=(1+1+1+1+1+1+1)-(1/2+1/6+1/12+....+1/56)`
`A=7-(1/[1xx2]+1/[2xx3]+1/[3xx4]+....+1/[7xx8])`
`A=7-(1-1/2+1/2-1/3+1/3-1/4+....+1/7-1/8)`
`A=7-(1-1/8)`
`A=7-(8/8-1/8)`
`A=7-7/8`
`A=56/8-7/8=49/8`