Bậc của đa thức 8 x 8 - x 2 + x 9 + x 5 - 12 x 3 + 10 là:
A. 10
B. 8
C. 9
D. 7
Câu 8 :
a , Thu gọn và chỉ ra bậc của đơn thức A=1/2x^3 * 8/5x^2
b , Cho đa thức P(x)=x^2-5x+6
Tính P(0) và P(2)
Câu 9 : Cho 2 đa thức A(x) =5x^3+x^2-3x+5 và B(x)=5x^3+x^2+2x-3
a , Tính A(x)+B(x)
b, Tìm nghiệm của đa thức H(x)= A(x)-B(x) ( giúp vs)
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
Cho đa thức P(x) = \(2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\). Hãy viết đa thức thu gọn, tìm bậc và các hệ số của đa thức P(x).
\(P(x) = 2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\)
\(=(4{x^3}+5{x^3})+( 7{x^2}- 8{x^2})+(2x-10x)\)
\( = 9{x^3} - {x^2} - 8x\)
Ta thấy số mũ cao nhất của biến x là 3 nên \(P(x)\) có bậc là 3
Hệ số của \({x^3}\) là 9
Hệ số của \({x^2}\)là -1
Hệ số của x là -8
Hệ số tự do là 0
Xác định bậc của hai đa thức là tổng, hiệu của:
\(A(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1\) và \(B(x) = 8{x^5} + 8{x^3} + 2x - 3\).
Tổng 2 đa thức:
\(\begin{array}{l}A(x) + B(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 + 8{x^5} + 8{x^3} + 2x - 3\\ = ( - 8 + 8){x^5} + 6{x^4} + 8{x^3} + 2{x^2} + ( - 5 + 2)x + (1 - 3)\\ = 6{x^4} + 8{x^3} + 2{x^2} - 3x - 2\end{array}\)
Vậy bậc của hai đa thức là tổng là: 4.
Hiệu 2 đa thức:
\(\begin{array}{l}A(x) - B(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 - (8{x^5} + 8{x^3} + 2x - 3)\\ = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 - 8{x^5} - 8{x^3} - 2x + 3\\ = ( - 8 - 8){x^5} + 6{x^4} - 8{x^3} + 2{x^2} + ( - 5 - 2)x + (1 + 3)\\ = - 16{x^5} + 6{x^4} - 8{x^3} + 2{x^2} - 7x + 4\end{array}\)
Vậy bậc của hai đa thức là hiệu là: 5
1. Cho hai đa thức: R(x)=-8(x^4)+6(x^3)+2(x^2)+5x-1 và S(x)=(x^4)-8(x^3)+2x+3. Tính: a) R(x)+S(x); b) R(x)-S(x). 2. Xác định bậc của hai đa thức là tổng, hiệu của: A(x)=8(x^5)+6(x^4)+2(x^2)-5x+1 và B(x)=8(x^5)+8(x^3)+2x-3.
Cho đa thức P(x) = 2x2 + 8
a) Tìm bậc của đa thức P(x)
b) Tìm ngiệm của đa thức P(x)
a) Bậc của đa thức là số mũ của hạng tự cao nhất trong đa thức đó.Nên bậc của đa thức đó là 2
b) \(P\left(x\right)=2x^2+8\ge8>0\forall x\)
Do đó đa thức trên không có nghiệm.
Ơ bài tth nó sai chỗ nào?mấy thánh bớt spam tk đi! =_="
a)Bậc của đa thức là số mũ của hạng tự cao nhất trong đa thức đó.Nên bậc của đa thức đó là 2.
b)\(P\left(x\right)=2x^2+8\ge8>0\forall x\)
Do đó đa thức trên không có nghiệm.
Cho hai đa thức:
\(\begin{array}{l}A = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\B = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\end{array}\)
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.
b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.
a)
\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)
b) * Đa thức A(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -7
+ Hệ số tự do là: 9
* Đa thức B(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: 8
+ Hệ số tự do là: -7
Cho 2 đa thức : P(x) = 3x^3 - 2x + 7 + x^2 + 7x + 8 và Q(x) = 2x^2 - 3x^3 + 4 - 3x^2 - 9
a , sắp xếp 2 đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến và chỉ rõ bậc , hệ số cao nhất hệ số tự do của mỗi đa thức
b , Tìm M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
c , tìm nghiệm của đa thúc M(x) , chứng tỏ nghiệm đó k phải là nghiệm của đa thức N ( x)
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8
Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5
ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm
Xét M(x)=0 suy ra...........
N(x)=5x+3
Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Bài 3. Cho đa thức M(x) = 2x ^ 5 + x ^ 2 - 2x ^ 5 - 16x + 64 a) Tìm bậc của đa thức M(x) 8 và cho biết giá trị nào của x là nghiệm của M(x)
a: M(x)=x^2-16x+64=(x-8)^2
Đặt M(x)=0
=>x-8=0
=>x=8
Thu gọn rồi tìm bậc của đa thức :
\(x^3y^4-5y^8+x^3y^4+x^3-y^2-xy^4+5y^8\)
\(x^3y^4-5y^8+x^3y^4+x^3-y^2-xy^4+5y^8\)
Rút gọn:
\(\left(-5y^8+5y^8\right)+\left(x^3y^4+x^3y^4\right)-xy^4+x^3-y^2\)
\(=2x^3y^4-xy^4+x^3-y^2\)
Bậc của đa thức là 7
Cho f(x) = x^5 + 3x^2 - 5x^3 - x^7 + x^3 + 2x^2 + x^5 - 4x^2 + x^7
g(x) = x^4 + 4x^3 - 5x^8 - x^7 + x^3 + x^2 - 2x^7 + 4x^2 - x^8
Thu gọn và sắp xếp các đa thức f(x) và g(x) theo lũy thừa giảm của biến rồi tìm bậc của các đa thức đó.