Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Hai

Những câu hỏi liên quan
Trần Văn Giáp
Xem chi tiết
trtttttffggg
11 tháng 10 2017 lúc 19:53

hreury

Tiểu Sam
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2018 lúc 5:58

Thảo Vũ
Xem chi tiết
HT2k02
5 tháng 4 2021 lúc 22:08

Áp dụng bất đẳng thức Bunhiacopxki cho cặp 3 số ta có:

\(\left[\left(\dfrac{x}{\sqrt{a}}\right)^2+\left(\dfrac{y}{\sqrt{b}}\right)^2+\left(\dfrac{z}{\sqrt{c}}\right)^2\right]\left[\sqrt{a}^2+\sqrt{b}^2+\sqrt{c}^2\right]\ge\left[\dfrac{x}{\sqrt{a}}\cdot\sqrt{a}+\dfrac{y}{\sqrt{b}}\cdot\sqrt{b}+\dfrac{z}{\sqrt{c}}\cdot\sqrt{c}\right]^2=\left(x+y+z\right)^2\)

Dấu = xảy ra khi x/a=y/b=z/c

RedfoxB VN
6 tháng 4 2021 lúc 16:50

\(\dfrac{x^2}{a}\) + \(\dfrac{y^2}{b}\) + \(\dfrac{z^2}{c}\)≥ \(\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

Jane
Xem chi tiết
 Mashiro Shiina
15 tháng 7 2019 lúc 12:57

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(c+a\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)

\(P=a^2x+b^2y+c^2z=\left(b+c\right)^2x+\left(c+a\right)^2y+\left(a+b\right)^2z\)\(=\left(b^2x+c^2x+c^2y+a^2y+a^2z+b^2z\right)+2\left(bcx+acy+abz\right)\)\(=a^2\left(y+z\right)+b^2\left(z+x\right)+c^2\left(x+y\right)+2\left(bcx+acy+abz\right)=0\)ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Leftrightarrow xbc+ayc+abz=0\)

\(\Rightarrow P=-a^2x-b^2y-c^2z\)

\(\Rightarrow a^2x+b^2y+c^2z=-\left(a^2x+b^2y+c^2z\right)\Rightarrow2\left(a^2x+b^2y+c^2z\right)=0\Rightarrow P=0\)

vaqddddd
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 12 2019 lúc 16:43

Đáp án đúng : D

Anh Quốc
Xem chi tiết
©ⓢ丶κεη春╰‿╯
24 tháng 2 2018 lúc 17:16

ta có: a+b+c=1 
<=>(a+b+c)^2=1 
<=>ab+bc+ca=0 (1) 
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 
từ (1) và (2) ta có đpcm 
Chúc bạn học giỏi!

:3

bao than đen
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Minh Hoàng
27 tháng 12 2020 lúc 18:43

Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).

Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).