Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dâu Tây
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2021 lúc 0:19

\(\Delta'=\left(m-3\right)^2-\left(m^2+3\right)=-6m+6>0\Rightarrow m< 1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(x_1^2+x_2^2=86\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow4\left(m-3\right)^2-2\left(m^2+3\right)=86\)

\(\Leftrightarrow m^2-12m-28=0\Rightarrow\left[{}\begin{matrix}m=14\left(loại\right)\\m=-2\end{matrix}\right.\)

Nguyễn Huy Tú
14 tháng 4 2021 lúc 6:08

Ta có : \(\Delta=\left(2m+6\right)^2-4\left(m^2+3\right)=4m^2+24m+36-4m^2-12=24m+24\)

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

\(24m+24>0\Leftrightarrow24m>-24\Leftrightarrow m>-1\)

Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

mà \(\left(x_1+x_2\right)^2=\left(2m+6\right)^2\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2x_1x_2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2m^2-6=2m^2+24m+30\)

Lại có : \(x_1^2+x_2^2=86\)hay \(2m^2+24m+30=86\Leftrightarrow2\left(m^2+12m-28\right)=0\)

\(\Leftrightarrow2\left(m-2\right)\left(m+14\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(chon\right)\\m=-14\left(loại\right)\end{matrix}\right.\)

 

l҉o҉n҉g҉ d҉z҉
14 tháng 4 2021 lúc 6:30

Để phương trình có hai nghiệm phân biệt thì Δ > 0

=> [ -(m-3) ]2 - (m2 + 3) > 0

<=> m2 - 6m + 9 - m2 - 3 > 0

<=> -6m + 6 > 0

<=> m < 1

Vậy với m < 1 thì phương trình có hai nghiệm phân biệt

Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

Khi đó x12 + x22 = 86

<=> ( x1 + x2 )2 - 2x1x2 - 86 = 0

<=> ( 2m - 6 )2 - 2( m2 + 3 ) - 86 = 0

<=> 4m2 - 24m + 36 - 2m2 - 6 - 86 = 0

<=> 2m2 - 24m - 56 = 0

<=> m2 - 12m - 28 = 0

Δ' = b'2 - ac = 36 + 28 = 64

Δ' > 0, áp dụng công thức nghiệm thu được m1 = 14 (ktm) ; m2 = -2 (tm)

Vậy với m = -2 thì thỏa mãn đề bài

Hoàng
Xem chi tiết
Hoàng
11 tháng 3 2021 lúc 21:38

undefined

Hoàng
11 tháng 3 2021 lúc 21:39

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 8 2017 lúc 15:33

Tại x = -2 ta có:

Vế trái = 2(x + 2) – 7 = 2(– 2 + 2) – 7 = 2.0 – 7 = -7.

Vế phải = 3 – x = 3 – (– 2) = 5 ≠ -7

Suy ra: x = - 2 không thỏa mãn phương trình

Ánh Dương
Xem chi tiết
Sarah
Xem chi tiết
Haian
16 tháng 3 2021 lúc 15:01

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2017 lúc 2:54

Tại x = 2 ta có:

Vế trái = 2(2 + 2) – 7 = 2.4 – 7 = 8 – 7 = 1

Vế phải = 3 – x = 3 – 2 = 1

⇒ vế trái = vế phải = 1 nên x = 2 có là một nghiệm của phương trình

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2019 lúc 9:22

Với x = -3 thì

VT = 2(x + 3) – 3 = 2(– 3 + 3) – 3 = 2. 0 – 3 = 0 – 3 = – 3

Ta có: VP = 3 – x = 3 – (– 3) = 6 ≠ – 3

Vậy x = - 3 không thỏa mãn phương trình

Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2017 lúc 11:11

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3

Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng

|x – 1| = 0 ó x – 1 = 0  ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.

Vậy có 1 khẳng định đúng

Đáp án cần chọn là: B

Hà Tiến Quân
Xem chi tiết