giai pt sau
\(\frac{90}{x}+\frac{90}{x+9}+\frac{1}{2}=5\)
giai pt sau
\(\frac{|x+3|}{4}-\frac{|x-4|}{9}=\frac{1}{2}-\frac{x+5}{36}..\)
\(9\text{|}x+3\text{|}-4\text{|}x-4\text{|}=18-x+5.\) ( quy đồng) mẫu chung là 36
phá dấu bừa nhé
TH1 : \(9\left(-x-3\right)-4\left(-x+4\right)=18-x+5\)
\(-9x-27+4x-16=18-x+5\)
\(-4x=18+5+27+16=66\)
\(x=\frac{66}{-4}\)
TH2: \(9\left(x+3\right)-4\left(x-4\right)=18-x+5\) ( quy đồng ) mẫu chung là 36
\(9x+27-4x+16=18-x+5\)
\(6x=18+5-27-16=-20.\)
\(x=-\frac{20}{6}\)
p/s làm bừa nhé đừng chửi
phá dấu trị tuyệt đối ra có bị làm sao k ?
Giải các PT sau:
a/ \(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)
b/ \(20\left(\frac{x-2}{x+1}\right)^2-5\left(\frac{x+2}{x-1}\right)+48\left(\frac{x^2-4}{x^2-1}\right)=0\)
a,\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x+1}.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)\(\Leftrightarrow\left(\frac{x^2-x+x^2+x}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-90=0\)\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}-10\right)\left(\frac{2x^2}{x^2-1}+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2}{x^2-1}=10\\\frac{2x^2}{x^2-1}=-9\end{cases}\Leftrightarrow......}\)
b,Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\Rightarrow ab=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2-4}{x^2-1}\)
Từ đó ta có phương trình:\(20a^2-5b^2+48ab=0\Leftrightarrow20a^2-2ab-5b^2+50ab=0\)
\(\Leftrightarrow2a\left(10a-b\right)+5b\left(10a-b\right)=0\Leftrightarrow\left(2a+5b\right)\left(10a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=-5b\\10a=b\end{cases}}\)
TH1:\(2a=-5b\Leftrightarrow\frac{2\left(x-2\right)}{x+1}=\frac{-5\left(x+2\right)}{x-1}\)\(\Rightarrow2\left(x-2\right)\left(x-1\right)=-5\left(x+2\right)\left(x+1\right)\)\(\Leftrightarrow2x^2-6x+4=-5x^2-15x-10\)\(\Leftrightarrow7x^2+9x+14=0\)
\(\Leftrightarrow7\left(x^2+\frac{9}{7}x+2\right)=0\Leftrightarrow7\left(x^2+2.\frac{9}{14}+\frac{81}{196}\right)+\frac{311}{28}=0\)
\(\Leftrightarrow7\left(x+\frac{9}{14}\right)^2+\frac{311}{28}=0\),vô lí
TH2:Tự làm nhé ,tương tự
giai pt:\(\frac{\left|x-3\right|}{4}-\frac{\left|x-4\right|}{9}=\frac{1}{2}-\frac{x+5}{36}.\)
giải pt
a) \(tanx.tan\frac{\pi}{9}=1+tan\frac{\pi}{9}.tan\frac{\pi}{90}+tanx.tan\frac{\pi}{90};\left(-2\pi< x< 2\pi\right)\)
b) \(tan^22x+\frac{1}{cos^22x}=7;\left(0< x< 360^0\right)\)
c) \(tan^3x+\frac{1}{cos^2x}+4\sqrt{3}\left(1+tanx\right)=8+7tanx;\left(-\pi< x< \pi\right)\)
a/ \(\Leftrightarrow tanx.tan\frac{\pi}{9}-1=tan\frac{\pi}{90}\left(tanx+tan\frac{\pi}{9}\right)\)
\(\Leftrightarrow\frac{tanx+tan\frac{\pi}{9}}{1-tanx.tan\frac{\pi}{9}}=-\frac{1}{tan\frac{\pi}{90}}\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{9}\right)=tan\left(\frac{23\pi}{45}\right)\)
\(\Rightarrow x+\frac{\pi}{9}=\frac{23\pi}{45}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{5}+k\pi\)
Do \(-2\pi< x< 2\pi\Rightarrow-2\pi< \frac{2\pi}{5}+k\pi< 2\pi\)
\(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x=\left\{-\frac{8\pi}{5};-\frac{3\pi}{5};\frac{2\pi}{5};\frac{7\pi}{5};\frac{12\pi}{5}\right\}\)
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
giai phuong trinh
a.\(\frac{5x-3}{x^2-9}-\frac{x}{x-3}=\frac{2x-1}{x+3}\)
b.\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
b) \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
=> \(\left(\frac{x-90}{10}-1\right)+\left(\frac{x-76}{12}-2\right)+\left(\frac{x-58}{14}-3\right)+\left(\frac{x-36}{16}-4\right)+\left(\frac{x-15}{17}-5\right)=0\)
=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=> \(\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x - 100 = 0
=> x = 100
a.\(74\frac{19}{35}.\frac{7}{90}+15\frac{16}{35}.\frac{7}{90}+2\frac{14}{90}\)
b,\(\left(\frac{-2}{5}+\frac{3}{7}\right)-\left(\frac{4}{9}+\frac{12}{20}-\frac{13}{35}\right)+\frac{7}{35}\)
AI GIAI DUOC MINH CHO 20 TICK
a) \(74\frac{19}{35}.\frac{7}{90}+15\frac{16}{35}.\frac{7}{90}+2\frac{14}{90}\)
= \(\left(74\frac{19}{35}+15\frac{16}{35}\right).\frac{7}{90}+2\frac{14}{90}\)
= 90 . 7/90 + 194/90
= 630/90 + 194/90
= 824/90 = 412/45
b) (-2/5 + 3/7) - (4/9 + 12/20 - 13/35) + 7/35
= -2/5 + 3/7 - 4/9 - 3/5 + 13/35 + 7/35
= (-2/5 - 3/5) + 3/7 - 4/9 + (13/35 + 7/35)
= -1 + 3/7 - 4/9 + 4/7
= -1 + (3/7 + 4/7) - 4/9
= -1 + 1 - 4/9 = -4/9
Giải pt
A,x2 + \(\frac{8+x^2}{\left(9+x\right)^2}\)= 40 b, \(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)
help me
#mã mã#
Giai pt sau
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
giải pt \(\frac{90}{x}-\frac{36}{x-6}=2\)
\(\frac{90}{x}-\frac{36}{x-6}=2\) MTC = x (x-6) ĐK\(\hept{\begin{cases}x\ne0\\x\ne6\end{cases}}\)
\(\frac{90\left(x-6\right)}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}=\frac{2x\left(x-6\right)}{x\left(x-6\right)}\)
\(\frac{90x-540}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}-\frac{2x^2-12x}{x\left(x-6\right)}=0\)
\(90x-540-36x-2x^2+12x=0\)
\(-2x^2+66x-540=0\)
\(-2x^2+36x+30x-540=0\)
\(-2x\left(x-18\right)+30\left(x-18\right)=0\)
\(\left(x-18\right)\left(-2x+30\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-18=0\\-2x+30=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=18\\x=15\end{cases}}\)
vậy.....
ĐKXĐ: \(x\ne0;\) \(x\ne6\)
\(\frac{90}{x}-\frac{36}{x-6}=2\)
\(\Leftrightarrow\)\(\frac{90\left(x-6\right)}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(\frac{90x-540-36x}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(\frac{54x-540}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(54x-540=2x\left(x-6\right)\)
\(\Leftrightarrow\)\(27x-270=x\left(x-6\right)\)
mk lm đc có vậy thôi. tham khảo nha
cảm ơn câu trả lời của song ngư đúng r mk cx lm ra vậy
Giải hệ PT
\(\left\{{}\begin{matrix}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\7x-3y+2z=90\end{matrix}\right.\)
Ta có hệ pt :
\(\left\{{}\begin{matrix}\frac{y}{3}=\frac{x}{4}\\\frac{z}{9}=\frac{x}{4}\\7x-3y+2z=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3x}{4}\\z=\frac{9x}{4}\\7x-\frac{3.3x}{4}+\frac{2.9x}{4}=90\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3x}{4}\\z=\frac{9x}{4}\\28x-9x+18x=360\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3x}{4}\\z=\frac{9x}{4}\\37x=360\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{4}.\frac{360}{37}\\z=\frac{9}{4}.\frac{360}{37}\\x=\frac{360}{37}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{270}{37}\\z=\frac{810}{37}\\x=\frac{360}{37}\end{matrix}\right.\)
Vậy . . . . . . . . .