Giải bất phương trình: \(\frac{P_{n+5}}{\left(n-k\right)!}\le60A^{k+2}_{n+3}\)
Giải bpt sau :
\(\frac{P_{x+5}}{\left(x-k\right)!}\le60A^{k+2}_{x+3}\)
Giải bất phương trình hai ẩn n, k với n,k \(\ge\) 0
\(\frac{P_{n+5}}{\left(n-k\right)!}\) \(\le\) 60\(A_{n+3}^{k+2}\) (1)
Điều kiện để (1) có nghĩa là
\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\)
Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z (2)
Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)
\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60 (3)
Vì n\(\ge\)k \(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1
Ta nhận thấy nếu n\(\ge\)4, thì
(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72
Do đó mọi n\(\ge\)4 không thỏa mãn (3)
- Xét lần lượt các khả năng
1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0
Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)
2) Nếu n=1, do 0\(\le\)k\(\le\)n \(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)
Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)
3) Nếu n=2 khi đó:
(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60
\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2
4) Nếu n=3
(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60
\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3
Vậy (1) có các nghiệm (n,k) sau
(0,0), (1,0), (1,1), (2,2), (3,3).
Chứng minh rằng nếu phương trình \(x^2+2mx+n=0\) có nghiệm thì phương trình \(x^2+2\left(k+\frac{1}{k}\right)mx+n\left(k+\frac{1}{k}\right)^2=0\)cũng có nghiệm.
Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)
Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)
\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k
\(\Rightarrow\)Pt đã cho có nghiệm
anh phương ơi dù em ko bt kiến thức lớp 9 nhưng anh k em 1 phát em có 1 sp thôi
Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
Cho k là số nguyên dương bất kì. Chứng minh bất đẳng thức sau \(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
Tính tổng của B :B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
HD:\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\)
B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)
B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]
Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.
chứng minh: \(nP_n+\left(n-1\right)P_{n-1}+\left(n-2\right)P_{n-2}+...+2P_2+1P_1+1=P_{n+1}\)
Giải hệ phương trình
\(\hept{\begin{cases}16\left(\frac{1}{m}+\frac{1}{n}\right)=5\left(m+\frac{m}{n}\right)\\27\left(\frac{1}{m}+\frac{1}{m}\right)=5\left(n+\frac{n}{m}\right)\end{cases}}\)
PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Dạng 1. TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA MỘT PHƯƠNG TRÌNH.
Bài 1. Tìm điều kiện xác định của các phương trình:
a) \(\frac{7x}{x+4}-\frac{x-3}{x-1}=\frac{x-5}{8}\) b) \(\frac{x+6}{5\left(x-2\right)}-\frac{x-1}{3\left(x+2\right)}=\frac{4}{x^2-4}\)
Dạng 2. GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Bài 2. Giải phương trình sau:
a) \(\frac{4x-3}{x-5}=\frac{29}{3}\)
b) \(\frac{2x-1}{5-3x}=2\)
c) \(\frac{7}{x+2}=\frac{3}{x-5}\)
Bài 3. Giải phương trình sau:
a) \(\frac{x+5}{3\left(x-1\right)}+1=\frac{3x+7}{5\left(x-1\right)}\)
b) \(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\)
c) \(\frac{11}{x}=\frac{9}{x+1}+\frac{2}{x-4}\)
Dạng 3. TÌM GIÁ TRỊ CỦA BIẾN ĐỂ GIÁ TRỊ CỦA HAI BIỂU THỨC CÓ MỐI LIÊN QUAN NÀO ĐÓ.
Bài 4. Cho hai biểu thức \(A=\frac{3}{3x+1}+\frac{2}{1-3x}\); \(B=\frac{x-5}{9x^2-1}\)với giá trị nào của x thì hai biểu thức A và B có cùng một giá trị ?
Dạng 4:PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU CHỨA THAM SỐ
Bài 5. Cho phương trình (ẩn x): \(\frac{x+k}{k-x}-\frac{x-k}{k+x}=\frac{k\left(3k+1\right)}{k^2-x^2}\)
a) Giải phương trình với \(k=1\)
b) Giải phương trình với \(k=0\)
c) Tìm các giá trị của k sao cho phương trình nhận \(x=\frac{1}{2}\)làm nghiệm.