Tìm giá trị n thuộc N thỏa mãn \(\frac{2P_n}{P_{n-1}}\)= A3n
Giải bpt sau :
\(\frac{P_{x+5}}{\left(x-k\right)!}\le60A^{k+2}_{x+3}\)
Chứng minh rằng :
1) \(2C_n^k+5C_n^{k+1}+4C_n^{k+2}+C_n^{k+3}=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
2) \(C_n^k+3C_n^{k-1}+3C_n^{k-2}=C_{n+3}^k\)
3) \(k\left(k-1\right)C_n^k=n\left(n-1\right)C_{n-2}^{k-2}\)
giải pt, bpt:
\(\dfrac{n!}{\left(n-2\right)!}\)+ \(\dfrac{3.\left(n+1\right)!}{n!}\)=3n
(n+2)! -4.(n+1)! < 5n!
Biết: \(C^2_{n+1}+2C^2_{n+2}+2C^2_{n+3}+C^2_{n+4}=149\). Tính: \(M=\frac{A^4_{n+1}+3A^3_n}{\left(n+1\right)!}\)
Giải BĐT:
\(4\le n!+\left(n+1\right)!< 50\)
Cho hàm số\(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^3-1}{2x-2}\\1+m\end{matrix}\right.\) khi x\(\ne\)1 , khi x=1.Tìm m để hàm số bị gián đoạn tại x=1.
Với n là số nguyên dương thỏa mãn \(3A^{n-2}_n+C^3_n=40\). Hệ số của x6 trong khai triển \(\left(2x-\dfrac{1}{x}\right)^{2n}\) là:
A.-1024 B.1024 C.-1042 D.1042
1/ Cho số nguyên tố p lẻ và \(p\equiv1\left(mod4\right)\)
Chứng minh số \(A=\sum\limits^{\dfrac{p-1}{2}}_{k=1}k.C^k_p\) là bội của \(p^2\)
2/ Cho các số nguyên dương k, m, n sao cho \(n\ge m+k;m\ge2k.\) Từ một nhóm gồm n người, trong đó có k cặp vợ chồng, có bao nhiêu cách chọn ra m người sao cho trong m người được chọn không có cặp vợ chồng nào.