Bài 2: Hoán vị, chỉnh hợp, tổ hợp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Mạnh Hữu

Giải bất phương trình hai ẩn n, k với n,k \(\ge\) 0

\(\frac{P_{n+5}}{\left(n-k\right)!}\) \(\le\) 60\(A_{n+3}^{k+2}\)                            (1)

Nguyễn Ngọc Duy
11 tháng 5 2016 lúc 9:38

Điều kiện để (1) có nghĩa là

\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\) 

Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z               (2)

Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)

\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60           (3)

Vì n\(\ge\)\(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1

Ta nhận thấy nếu n\(\ge\)4, thì

(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72

Do đó mọi n\(\ge\)4 không thỏa mãn (3)

- Xét lần lượt các khả năng

1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0

Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)

2) Nếu n=1, do  0\(\le\)k\(\le\)\(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)

Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)

3) Nếu n=2 khi đó:

(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60

\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2

4) Nếu n=3

(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60

\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3

Vậy (1) có các nghiệm (n,k) sau

(0,0), (1,0), (1,1), (2,2), (3,3).

 

 


Các câu hỏi tương tự
Nguyễn Thế Mãnh
Xem chi tiết
Nguyễn Ngọc Minh Long
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lazy Boy
Xem chi tiết
nguyen tien dat
Xem chi tiết