Ta có :
\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)
\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)
...........
\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)
Từ đó :
\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)
= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)
Ta có :
\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)
\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)
...........
\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)
Từ đó :
\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)
= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)
chứng minh các công th
1,\(k\left(k-1\right).C^k_n=n\left(n-1\right).C_{n-2}^{k-2}\)
2,\(\dfrac{1}{A^2_2}+\dfrac{1}{A^2_3}+...........+\dfrac{1}{A^2_n}=1-\dfrac{1}{n}\)
Lập công thức tổng quát tính tổng: \(C_n^0+C_n^1+...+C^k_n\). (với \(k,n\in\mathbb{N*};k\leq n\))
\(nC^k_n=\left(k+1\right)C^{k+1}_n+k.C^k_n\)
\(2C^k_n+5C^k^{+1}_n+4C_n^{k+2}+C^{k+3}_n=C^k^{+2}_{n+2}+C_{n+3}^{k+3}\)
Chứng minh rằng
\(C_n^m=C_{n-1}^{m-1}+C_{n-2}^{m-2}+...+C_{m-1}^{m-1}\)
a) Một lớp có 50 học sinh. Tính số cách phân công 4 bạn quét sân trường và 5 bạn xén cây bằng hai phương pháp để rút ra đẳng thức :
\(C_{50}^9C_9^4=C_{50}^4.C_{46}^5\)
b) Chứng minh công thức Niutơn :
\(C_n^r.C_r^k=C_n^k.C_{n-k}^{r-k}\) \(\left(n\ge r\ge k\ge0\right)\)
c) Tìm chữ số ở hàng đơn vị của tổng :
\(S=0!+2!+4!+6!+....+100!\)
Sử dụng đồng nhất thức \(k^2=C^1_k+2C^2_k\) để chứng minh rằng :
\(1^2+2^2+....+n^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=2}C^2_k=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Giải bất phương trình hai ẩn n, k với n,k \(\ge\) 0
\(\frac{P_{n+5}}{\left(n-k\right)!}\) \(\le\) 60\(A_{n+3}^{k+2}\) (1)
Giải phương trình
\(C_n^4\)+\(C_n^5\)= 3\(C_{n+1}^6\)