Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Thị Phương Thảo Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2021 lúc 23:56

Bài 2: 

a) Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(gt)

nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Trần Minh Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 8:38

Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

=>\(BA^2+BC^2-AC^2=2\cdot BA\cdot BC\cdot cos60=BA\cdot BC\)

=>AC^2=BA^2+BC^2-BA*BC

Lê Anh
Xem chi tiết
hjgjm
1 tháng 5 2017 lúc 10:48

9/4/2004 BMT

Lê Anh
1 tháng 5 2017 lúc 15:27

9/4/2004 BMT là sao vậy?

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 21:02

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

Sách Giáo Khoa
Xem chi tiết
tran nguyen bao quan
20 tháng 5 2019 lúc 21:19

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
ĐẶNG QUỐC SƠN
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Thạch Tít
Xem chi tiết
Lê Nhật Khôi
27 tháng 6 2018 lúc 17:03

Hình tự vẽ nhá 

Vì tam giác ABC cân tại A nên:

\(\widehat{B}=\widehat{C}\)

Mà \(\widehat{B}=\widehat{DME}\)

Suy ra: \(\widehat{C}=\widehat{DME}\)

Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)

Suy ra: \(\widehat{BMD}=\widehat{MEC}\)

Xét tam giác BMD và tam giác CEM có:

\(\widehat{B}=\widehat{C}\)(gt)

+\(\widehat{BMD}=\widehat{MEC}\)(cmt)

Do đó: \(\Delta BMD~\Delta CEM\)(g.g)

Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)

Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi

Vậy BD.CE không đổi

Trần Quỳnh Nga
1 tháng 12 2018 lúc 17:09

ý c nhé, a và b dễ tự làm nhé:

https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF