Cho tam giác ABC có AB = 4cm; AC = 5cm; BC = 6cm. Trên tia đối tia AB lấy D sao cho AD = 5cm.
a. Tam giác ABC đồng dạng với tam giác nào?
b. Tính CD.
c. CMR: \(\widehat{BAC}=2\widehat{ACB}\)
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
Cho tam giác ABC có \(\widehat{A}=90^0\) và AH là đường cao. Gọi D là điểm đối xứng với H qua AB , E là điểm đối xứng với H qua AC . Gọi I là giao diểm của AB và DH , K là giao điểm của AC và HE
Gỉa sử AB = 6cmc , AC =8cm . Tính IK
Cho \(\Delta\)ABC vuông tại A, đường cao AH. Biết BH = 9cm, BC = 25cm. Kẻ AK là phân giác \(\widehat{CAH}\) .
a, \(\Delta\) HBA \(\sim\) \(\Delta\) ABC
b, Tính AB, CK, HK
c, Trên AC lấy E sao cho CE= 5cm , trên BC lấy F sao cho CF = 4cm. Chứng minh: CEF vuông
Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD,BC. Chứng minh rằng: \(\widehat{BAC}=2\widehat{BMN}\)
Cho tam giác ABC có: \(3.\widehat{BAC}+2.\widehat{ABC}=180\) độ và số đo 3 cạnh của tam giác là 3 số chắn liên tiếp. Tính chu vi của tam giác ABC
Cho hình thang ABCD, AB // CD. Có cạnh AB = 2cm, BC = 8cm, CD = 9cm,\(\widehat{C}\) = 30. Tính diện tích ABCD
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC cân tại A, AB=AC=10cm; BC=8cm. Tính Sxq, Stp, V
Cho \(\Delta\)aBC, aB < aC, D nam giua a va C sao cho a\(\widehat{BD}\)= a\(\widehat{CB}\)
a) C/m: \(\Delta\)aDB \(\sim\) \(\Delta\) aBC. Từ đó suy ra aB\(^2\) = aC . aD
b) Biết diện tích tam giac aBC = 16cm\(^2\) . aB = 6cm, aC = 8cm. Tính S tam giac aBD
c) Tia phan giac cua góc a cat BC taị E, cat BD taị E. C/m: \(\frac{FD}{FB}=\frac{EB}{EC}\)
D) Ua a kẻ đường thang vuông góc với Ea cat BC taị M. C/m: MB.EC = MC.EB