Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho tam giác ABC có:  \(3.\widehat{BAC}+2.\widehat{ABC}=180\)  độ và số đo 3 cạnh của tam giác là 3 số chắn liên tiếp. Tính chu vi của tam giác ABC

Akai Haruma
13 tháng 3 2021 lúc 13:23

Hình như mình đã nhắc nhở bạn một lần về việc không đăng quá nhiều lần 1 bài toán nhưng bạn vẫn làm vậy. Lần sau mình xin phép sẽ xóa hết nhé!

Lời giải:

$3\widehat{A}+2\widehat{B}=180^0$

$\Rightarrow \widehat{A}+\widehat{B}< 90^0\Rightarrow \widehat{C}>90^0$

Do đó trong tam giác $ABC$ thì $AB$ là cạnh lớn nhất. Trên $AB$ lấy $M$ sao cho $AM=AC$

Ta có: 

$\widehat{AMC}=\frac{180^0-\widehat{A}}{2}$

$\Rightarrow \widehat{BMC}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{3\widehat{A}+2\widehat{B}-\widehat{A}}{2}$

$=180^0-(\widehat{A}+\widehat{B})=\widehat{ACB}$

Do đó:

$\triangle ACB\sim \triangle CMB$ (g.g)

$\Rightarrow \frac{AB}{CB}=\frac{CB}{MB}$

$\Rightarrow AB.MB=BC^2$

$\Leftrightarrow AB(AB-AM)=BC^2$

$\Leftrightarrow AB^2-AB.AC=BC^2$.

Nếu $(AB,BC,AC)=(k, k+2, k+4)$ thì:

$k^2-k(k+4)=(k+2)^2$

$\Leftrightarrow k^2+8k+4=0$

$\Leftrightarrow k=-4\pm 2\sqrt{3}$ (loại vì $k$ tự nhiên)

Nếu $(AB, BC, AC)=(k+2, k, k+4)$ thì:

$(k+2)^2-(k+2)(k+4)=k^2$

$\Leftrightarrow k^2+2k+4=0$

$\Leftrightarrow (k+1)^2=-3< 0$ (vô lý)

Vậy không tìm được chu vi.
 

Akai Haruma
13 tháng 3 2021 lúc 13:25

Hình vẽ:

undefined


Các câu hỏi tương tự
Lil Shroud
Xem chi tiết
Lil Shroud
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Big City Boy
Xem chi tiết