Giải phương trình sau : \(4\sqrt{x+2}+\sqrt{10-3x}=x^2+8\left(đk:-2\le x\le\frac{10}{3}\right)\)
Giải các bất phương trình sau:
1) \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
2) \(\sqrt{2x^2-6x+8}-\sqrt{x}\le x-2\)
3) \(4\left(x+1\right)^2< \left(2x+10\right)\left(1-\sqrt{3+2x}\right)\)
4) \(4\sqrt{x+1}+2\sqrt{2x+3}\le\left(x-1\right)\left(x^2-2\right)\)
Giải bất phương trình: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
giải các bất phương trình sau :
1, \(\sqrt{2x+3}+\sqrt{x+2}\le1\)
2, \(\sqrt{5x^2+10x+1}>7-2x-x^2\)
3,\(6\sqrt{\left(x-3\right)\left(x-2\right)}\le x^2-34x+48\)
4,\(\dfrac{2x-4}{\sqrt{x^2-3x-10}}>1\)
5, \(\left(x-2\right)\sqrt{x^2+4}\le x^2-4\)
6, \(\sqrt{x^2+x-2}+\sqrt{x^2+2x-3}\le\sqrt{x^2+4x-5}\)
Giải hệ pt:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\end{cases}\le}3\)
1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)
\(\left(x-2\right)\sqrt{x^2-2x-3}\le x^2-4\)
Giải bất phương trình
Em 2k8 k biết làm có đúng k
ĐKXĐ : \(\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)
Bpt \(\Leftrightarrow\left(x-2\right)\left[x+2-\sqrt{x^2-2x-3}\right]\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2;x+2\ge\sqrt{x^2-2x-3}\left(1\right)\\x\le2;x+2\le\sqrt{x^2-2x-3}\left(2\right)\end{matrix}\right.\)
(1) có : \(x+2\ge\sqrt{x^2-2x-3}\Leftrightarrow\left(x+2\right)^2\ge x^2-2x-3\)
\(\Leftrightarrow6x+7\ge0\) (Đ với \(x\ge2\) )
(2) có : \(\sqrt{x^2-2x-3}\ge x+2\)
TH1 : x + 2 < 0 <=> \(x< -2\) ( Bpt luôn đúng )
TH2 : \(x+2\ge0\) ; Bp 2 vế rút gọn được : \(6x+7\le0\Leftrightarrow x\le\dfrac{-7}{6}\)
Khi đó : \(-2\le x\le\dfrac{-7}{6}\)
Vậy ...
tìm GTLN
A=\(3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
B=4x(8-5x) với \(0\le x\le\frac{8}{5}\)
C=4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
D=x\(\left(3-\sqrt{3}\right)\) với \(0\le x\le\sqrt{3}\)
Tìm GTNN
A=\(\frac{3x}{2}+\frac{2}{x-1}\) với x>1
B=x+\(\frac{2}{3x-1}\) với x>1/3
A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)
\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)
B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)
\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)
\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)
\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)
\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)
\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)
C = \(4\left(x-1\right)\left(8-5x\right)=\frac{4}{5}.\left(5x-5\right)\left(8-5x\right)\)\(\le\frac{4}{5}.\frac{\left(5x-5+8-5x\right)^2}{4}=\frac{9}{5}\)
\(\Rightarrow\)max C = \(\frac{9}{5}\)\(\Leftrightarrow x=\frac{13}{10}\)(thỏa mãn)
D = \(x\left(3-\sqrt{3}\right)\)(quá dễ rồi)
Giải bất phương trình:
a) \(\frac{1-\sqrt{21-4x-x^2}}{x+4}< \frac{1}{2}\)
b) \(\frac{1-\sqrt{8x-3}}{4x}\ge4\)
c) \(4\left(x+1\right)^2\le\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
d) \(\left(\sqrt{x+4}+2\right)\left(\sqrt{2x+6}-1\right)< x\)