Chứng minh rằng từ tỉ thức a/b=c/d (b-d≠0) ta suy ra được c/d=a-c/b-d
Mong mn giúp ạ!
chứng minh rằng từ tỉ lệ thức a/b = c/d (b+d không bằng 0) ta suy ra được
a/b = a+c/b+d
ta có a/b , c/d suy ra AB=CD
và ta có : AD + AB = BC + AB
hoặc 1 cách nữa là : A . ( B+D ) = B ( A.C) (1)
và đề cho B và D khác ko => B+D không bằng 0
=> từ ( 1) ta có đc 1 tỉ lệ thức :
=> A/B = A+C phần B+D
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)(đpcm)
chứng minh rằng từ tỉ lệ thức a\b=c\d(với b+d khác 0) ta suy ra được a\b=a+c\b+d
Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\) ad = cb
Ta có: ab + cd = bc + cd
(a + c)d = (b + d)c
\(\Rightarrow\) a + \(\frac{c}{b}\) + d = \(\frac{c}{d}\)
Mà \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\) \(\frac{a}{b}\) = a + \(\frac{c}{b}\) + d
chứng minh rằng từ tỉ lệ thức a/b = c/d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b = c+d/c-d
giúp mk vs lm xg mk tik cho
\(\frac{a}{b}=\frac{c}{d}\)(\(b,d\ne0\))
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow2ad=2bc\)
\(\Leftrightarrow ad-bc=bc-ad\)
\(\Leftrightarrow ad-bc+ac-bd=bc-ad+ac-bd\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(\(a-b,c-d\ne0\))
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b ≠ 0, c - d ≠ 0) ta có thể suy ra được \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Giúp e câu cuối cùng với ah, 23h58 là e phải nộp ròi ah
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\Rightarrow\dfrac{b}{a-b}=\dfrac{d}{c-d}\Rightarrow\dfrac{2b}{a-b}=\dfrac{2d}{c-d}\)
\(\Rightarrow\dfrac{2b}{a-b}+1=\dfrac{2d}{c-d}+1\)
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) (đpcm)
Chứng minh rằng tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức
a+ b/a- b = c + d/c - d
Mọi người giúp mình bài này với ạ !
Chứng minh rằng từ tỉ lệ thức a/b=c/d (với b+d khác 0) ta suy ra được a/b=a+c/b+d
ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow ab+ad=ab+bc\)
\(\Leftrightarrow a\left(b+d\right)=b\left(a+c\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\left(đpcm\right)\)
chứng minh rằng từ tỉ lệ thức a/b=c/d ( a-b khác 0, c - d khác 0) ta có thể suy ra tỉ lệ thức a+b/c-b+c+d/c-d
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức a+b/a-b = c + d/c-d
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5
Chứng minh rằng từ tỉ lệ thức a/b=c/d (a - b khác 0, c - d khác 0 ) ta có thể suy ra tỉ lệ thức( a+b/a-b ) = (c+d / c- d )
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
ta có a/b , c/d suy ra AB=CD
và ta có : AD + AB = BC + AB
hoặc 1 cách nữa là : A . ( B+D ) = B ( A.C) (1)
và đề cho B và D khác ko => B+D không bằng 0
=> từ ( 1) ta có đc 1 tỉ lệ thức :
=> A/B = A+C phần B+D